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THEORETICAL AND EXPERIMENTAL INVESTIGATION OF SUPERCAVITATING 
HYDROFOILS OPERATING NEAR THE FREE WATER SURFACE 

By VIRGIL E. JOHNSON, Jr. 

SUMMARY 

The linearized theory f o r  inJnite depth i s  applied 
to the design of two new low-drag supercavitating 
hydrqfoils. The linearized solution for  the charac- 
teristics of supercavitating hydrqfoils operating at 
zero cavitation number atJinite depth i s  also accom- 
plished. The eflects of camber determined f r o m  the 
linear theory are combined with the exact nonlinear 
Rat-plate solution to produce nonlinear expressions 
for the characteristics of arbitrary sections. The re- 
sulting theoretical expressions are corrected f o r  
aspect ratio by conventional aeronautical methods. 

An experimenta! investigation was made in 
Langley tank no. 2 of two aspect-ratio-1 hydrofoils, 
one with a f lat  surface and one with a cambered 
lower surface. A zero cavitation number was ob- 
tained in the tank by operating the hydrofoils near 
the free water surface so that their upper surfaces 
were completely ventilated. Some data were also 
obtained on  these sections at Jinite cavitation num- 
bers. For the condition of zero cavitation number 
the theoretical expressions developed are compared 
with the results of the present experimental investiga- 
t ion and with experimental results f r o m  other sources. 
Agreement between theory and experiment i s  found 
to be good for the lift  coe$icient, drag coe$cient, 
center of pressure, and location of the upper cavity 
streamline provided the magnitude of camber i s  not 
excessive. 

The theory i s  used to compare the maximum 
lijt-drag ratios obtainable f r o m  variou2 cambered 
sections of approximately equal strength. The 
analysis reveals that the max imum lijt-drag ratio i s  
not greatly dependent on  the type of camber and that 
for  operation at depths greater than about 1 chord, 
a lijt-drag ratio of about IO is close to the maximum 

value that can be attained on  a single hydrofoil sup- 
ported by one strut and operating at speeds in excess 
of 80 knots at zero cavitation number. 

INTRODUCTION 

The desirability of using an auxiliary lifting 
surface such as a hydro-ski for reducing seaplane 
hull loads and for improving rough-water per- 
formance has been established. It is possible that 
hydrofoils with higher aspect ratio and thus higher 
efficiencies could be superior to the hydro-ski; 
however, only the low-aspect-ratio planing hydro- 
ski has so far been successfully applied as landing 
gear to modern high-speed aircraft because the 
conventional hydrofoil presents problems not ex- 
perienced by a hydro-ski. 

As a hydrofoil nears the free surface (during a 
take-off run) the low-pressure side of the hydro- 
foil almost always becomes ventilated from the 
atmosphere. This phenomenon results in a severe 
and usually abrupt loss in lift and a reduction in 
the lift-drag ratio. For conventional airfoil sec- 
tions the loss in lift may exceed 75 percent. The 
speed a t  the inception of ventilation depends on 
the angle of attack and depth of submersion; 
however, except for very small angles of attack 
and relatively low take-off speeds, the inception 
speed is usually well below the take-off speed of 
the aircraft. 

Even if the ventilation problem is overcome by 
using small angles of attack and incorporating 
“fences” or other devices for suppressing ventila- 
tion, the onset of cavitation presents a second 
deterrent to the use of conventional hydrofoils 
a t  high speeds. The loss in lift accompanying 
cavitation of conventional airfoil sections is not 

1 Supersedes declassified NACA Research Memorandum L57011s and NACA Research Memorandum L57116 by Virgil E. Johnson, Jr., 1957. 
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abrupt, but the ultimate reduction in lift and 
lift-drag ratio is comparable to that of ventilated 
flow. Even thin airfoil sections of small design 
lift coefficient start to cavitate and experience 
poor lift-drag ratios a t  speeds in excess of about 
80 knots. 

Since the take-off speed of supersonic aircraft 
may be in the range of 150 to 200 knots, lifting 
surfaces with cavitating or ventilating character- 
istics superior to those of conventional airfoil 
sections are desirable. Fortunately, the theoretical 
work of Tulin and Burkart (ref. 1) has shown that 
superior configurations do exist and they have 
selected a cambered configuration for operation 
in cavitating or ventilated flow which has a two- 
dimensional lift-drag ratio a t  its design angle of 
attack and zero cavitation number that is about 
six times that of a flat plate. If such a cambered 
foil can be induced to ventilate a t  very low speeds 
while the aircraft hull still supports most of the 
load, a stable and efficient take-off may be possible. 
This new philosophy is to design for operation 
with a cavity; whereas in the past the philosophy 
has been to try to avoid cavitation and ventilation. 

The present paper is concerned with some 
theoretical and experimental work on super- 
cavitating hydrofoils which has been carried out 
during the last few years by the Langley Research 
Center. Some of the theoretical work concerns 
the development of supercavitating sections which 
produce higher lift-drag ratios than the Tulin- 
Burkart section of reference 1. However, the 
principal purpose of the investigation has been to 
determine the characteristics of practical super- 
cavitating hydrofoils; thus, the effects of aspect 
ratio, depth of submersion, and hydrofoil thickness 
are subjects of particular interest. The theoretical 
discussion makes frequent use of the linearized 
theory for cavitating flows developed in reference 
1 and extends this theory to include the problem 
of hydrofoils which operate in a ventilated condi- 

nautical corrections for finite span are employed. 
The theoretical results obtained are compared with 
a variety of experimental data obtained in the 
towing tanks of the Langley Research Center. 

I 

I 
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I tion near the free surface. Conventional aero- 

SYMBOLS 
I A aspect ratio 

coefficients of sine-series expansion 
of vorticity distribution on equiv- 

alent airfoil section; that is, 

+A, sin 28 . . . A,, sin n,e) 

where 

- COS ne& 

Ao=-’su T , dx zde+a=a+Aot 

coefficients of sine-series expansion 
of vorticity distribution on hydro- 
foil section 

distance in chords from equivalent 
airfoil leading edge to center of 
pressure 

coefficients of cosine-series expansion 
defining location of image vortex 
in airfoil plane using z=--JZ 
transformation 

parameter defining location of spray 
at  infinity in t-plane (see ref. 2 )  

D total drag coefficient, - 
qs - 

skin-friction drag coefficient, - DY 
qs 

L total lift coefficient, - qs 
total lift coefficient of equivalent 

L 
qs 

lift coefficient exclusive of cross- 

- 
airfoil section, 

L1 
flow, 8 

L crossflow lift coefficient, 2 !ls 
two-dimensional lift coefficient a t  

infinite depth for a=O 
pitching-momen t coefficient (about - 

M leading edge), - 
PSC 

pi tching-momen t coefficient (about 
leading edge) , excluding crossflow 

pitching-moment coefficient of equiv- 
alent airfoil section (about leading - 

a x  
l V 1  edge), = 
PSC 
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I 

CP 
C 
D 

d 
Dl 

E 

F 
Fl 
f 

Lc 
I? 

M 
2M, 

m 

third-moment coefficient of equiva- 

lent airfoil section (see ref. I) ,  = z 3  

use4 
resultant-force coefficient on Gbi- 

F trary section, - 
qs 

resultant-force coefficient of flat - r; plate, - 
qs - 

coefficients of sine-series expansion 
of vorticity distribution on equiva- 
lent airfoil section a t  arbitrary 
depth using Z= -.@ transforma- 
tion 

P-P pressure coefficient, 2 
chord, f t  
total drag force, lb 
drag force due to skin friction, lb 
leading-edge depth of submersion, 

f t  unless otherwise specified 
Jones' edge correction, ratio of hy- 

drofoil semiperimeter to span 
resultant force, lb 
resultant force on flat plate, lb 
distance from hydrofoil leading edge 

to stagnation point in chords 
acceleration due to gravity, ft/sec2 
arbitrary parameter 
total lift force, lb 
lift force exclusive of crossflow, 

lift force due to crossflow, lb 
perpendicular distance from hydro- 

foil reference line to upper cavity 
streamline, f t  

P 

L- L,, Ib 

moment about leading edge, ft-lb 
third moment about leading edge, 

2 f p ( Z ) l & ,  ft3-lb 

ratio of lift coefficient to angle of 
attack, CL/a 

integers 
pressure, lb/sq ft 
pressure within cavity, lb/sq ft 
pressure at  mean depth of hydrofoil, 

fluid vapor pressure, lb/sq ft 
lb/sq f t  

R 

S 

t 
S 

U 

V 
V 

XC D 

XCP. c 

x c p ,  1 

Y 
a 

a' 

1 
2 free-stream dynamic pressure, - pV2, rL 

lb/sq f t  

cavity-ordinate-aspect-ratio correc- 

area, sq ft 
span, f t  
arbitrary parameter (see eqs. (114) 

perturbation velocity in X-direction, 

speed of advance, fps 
perturbation velocity in Y-direction, 

velocity induced by image vortex, 

coordinate axes 
complex plane, x+iy 
distance from leading edge along X- 

axis, ft 
distance from leading edge to center 

of pressure of hydrofoil, f t  
distance from leading edge to center 

of pressure of hydrofoil due to 
crossflow, f t  

distance from leading edge to center 
of pressure of hydrofoil excluding 
crossflow, ft 

tion factor 

and (115)); also thickness, f t  

fPS 

f Ps 

fPS 

distance along Y-axis, f t  
geometric angle of attack, radians 

unless otherwise specified 
angle-of-attack increase due to cam- 

ber, radians unless otherwise spec- 
ified 

induced angle of attack, radians un- 
less otherwise specified 

angle between hydrofoil chord line 
and reference line, positive when 
measured clockwise from the ref- 
erence line, radians unless other- 
wise specified 

angle of attack measured from hy- 
drofoil chord line, a'=a+a0, ra- 
dians unless otherwise specified 

circulation strength of single vortex, 
ft2/sec 

circulation strength of single vortex 
due to camber, ft2/sec 

circulation strength of single image 
vortex, ft2/sec 

central angle subtending chord of 
circular-arc hydrofoil, radians 

spray thickness a t  infinite distance 
downstream, ft 
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E deviation of resultant-force vector 
from normal to hydrofoil reference 
line, radians 

P 
7 
e 

complex airfoil plane, q,f plane 
ordinate in the { plane 
parameter defining - distance along 

C 
airfoil chord, E=s (1-cos 0) 

P 

t 
U 

4 

mass density, 

- 

lb-sec2 
f t 4  

abscissa in the { plane 
Po-Pc cavitation number, 7 

1 

cavitation number at inception 
correction factor for variation from 

elliptical plan form 
angle between spray and horizontal, 

radians unless otherwise specified 
angle between z-axis and line joining 

image vortex with a point on 
equivalent airfoil, radians unless 
otherwise specified 

s2 vorticity, ft2/sec 
0 indicates “function of,” for exttmple, 

C N ( 4  = C,,,(a+ a,) 
C D -  @=tan-’ ---(Y+c, radinns unless otherwise CL 

specified 
Subscripts: 
e effective 
0 zero depth of submersion 
t total 
03 infinite depth of submersion 
C P  center of pressure 
Ao due to A, 

Barred symbols refer to equivalent airfoil sec- 
tion and unbarred symbols refer to the super- 
cavitating hydrofoil section. 

DESCRIPTION OF SUPERCAVITATING 
FLOW 

The dimensionless number defining cavity flow 

is u = * e c  where p ,  is the pressure a t  tlie mean 

depth; p, ,  the pressure within the cavity; nnd p, 
the dynamic pressure. The mitgriitudc of u for 
the condition a t  which ctivitation is incipicn t is 
denoted by the piirticwlar value ut. If u is reduced 
to values less than ut, cvivitatioii bccomcs more 
severe; that is, the cavitcition zone extends over 

P 

a larger area. When a hydrofoil operates a t  suf- 
ficiently low values of U ,  the cavity formed may 
completely enclose the upper or suction surface 
and extend several chords downstream as shown 
in figure l(a). The reentrant flow formed a t  the 
rear of the cavity is caused by the necessity for 
constant pressure along the cavity streamline. 
When the cavity is sufficiently lorlg so that the 
reentrant flow is dissipated without impinging on 
the body creating the cavity (as shown in fig. 
l(a)), the flow is defined as supercavitating. 
Theoretically, if the cavitation number is reduced 
to zero, the cavity formed will extend to infinity. 

Low values of cavitation number, and thus 
supercavitating flow, may be obtained by either 
increasing the velocity or cavity pressure or both. 
A t  a constant depth and water temperature, u 
for normal vapor-filled cavities is dependent only 
on the velocity since p,-p, is then p,-p, and is 
constant . 

If part or all the boundary layer of a configura- 
tion is separated, the eddying fluid in the sepa- 
rated region can be replaced by a continuous flow 
of a lighter fluid such as air. (See refs. 3 and 4.) 
Regulation of the amount of air supplied will 
control the cavity pressure and thus the length 
of the cavity formed. If the quantity of air sup- 
plied is very large, the cavity pressure will approach 
the ambient pressure p ,  and a very long cavity 
will result even a t  low stream velocities. 

The ventilation of a surface-piercing hydrofoil 
therefore results in a supercavitating flow because 
of large quantities of air being supplied from the 
atmosphere to separated flow on the suction 
surface of the hydrofoil. Supercavitating flow 
as a result of ventilation also occurs when a 
nonsurface-piercing hydrofoil of moderate aspect 
ratio operates near the free surface. (See fig. 
l(b).) As pointed out in reference 5, air is 
entrained in the trailing vortices and is drawn 
to the suction side of the hydrofoil so that a long 
trailing cavity completely encloses the hydrofoil 
upper surface and extends far downstream. The 
ventilated type of cavity described in reference 5 
differs in shape from those formed in deeply 
submerged flow because of the proximity of the 
free surftirr. Ventilated flow near the free surface 
is sirnilair to plttning, the spray forming the upper 
surface of the cavity. Since the cavity pressure 
is ~pproxinir~tely the same as the ambient pressure 
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"j Pc -- 
(a) Supercavitating flow at finite cavitation number. 

(b) Supercavitating or ventilated flow near the free 
u>o.  

surface. u = 0. 

FIGURE 1.-Definition sketch. 

(at small depths of submersion), the cavitation 
number for this type of flow is nearly zero. The 
present paper is principally concerned with the 
theoretical predictions of the characteristics of 
practical hydrofoils operating in the ventilated or 
zero-cavitation-number flow condition. 

THEORETICAL INVESTIGATION 

FORCES AND MOMENTS 

TWO-DIMENSIONAL THEORY 

Flat plate ; infinite depth.-The characteristics 
of a two-dimensional inclined flat plate in an 
infinite fluid, operating at  zero cavitation number, 
have been obtained by Kirchoff and Rayleigh. 
(See ref. 6). The resultant force on the plate is 
given by the well-known equation 

Flat plate ; finite depth.-Similar work was per- 
formed by A. E. Green (refs. 2 and 7) which 
included the effect of the free surface but neglected 
gravity. The solution is necessarily obtained in 
terms of the spray thickness 6 rather than the 
more useful depth of submersion and is given 
as two parametric equations in terms of the 
parameter b 

- 
2(b-4b2-1) sin a cos a- -ma K c&= C N , ,  cos ff= 

( 2 4  

where 

K = ( b - m )  sin a 

+f [z cos a+ (b cos a-1) log, - 
n- b+l b-ll 

This result is plotted as the variation of CJa or 
m with 6/c for various angles of attack in figure 2. 

Although gravity is neglected in Green's solu- 
tion, the forces on the plate can still be obtained 
in terms of 6/c from equation (2) if the Froude 
number V2/gc is large. On the other hand, the 
relationship between the spray thickness and the 
actual leading-edge depth of submersion cannot be 
determined from Green's two-dimensional analy- 
sis. However, in the practical case, a t  small 
angles of attack the depth of submersion and spray 
thickness may be taken as identical even a t  rela- 
tively shallow depths. From figure 2 it may be 
seen that, for depths greater than about 1 chord, 
the depth and spray thickness may be consider- 
ably different without affecting the value of m. 
Thus, a t  depths greater than about 1 chord, the 
assumption that d/c=S/c is adequate to determine 
the forces. However, a t  large angles of attack and 
shallow depths, a better relationship is needed be- 
tween d / c  and 6/c if adequate accuracy is to  be 
maintained. No theoretical solution for the 
relationship has been obtained. However, in 
order to give an idea of the relationship between 
these variables, experimentally obtained lines of 
constant d /c  for an aspect-ratio-1 flat plate are 
shown in figure 2. Experience has shown that 
these lines are sufficiently accurate for determining 
the value of m for moderate aspect ratios. The 
lines of constant d / c  were faired to a value of 
a=9O0 obtained from the equation 

(3) 

where f/c is the dimensionless distance from the 
leading edge to the stagnation point for the con- 
dition of a=90°. The distance f/c can be ob- 
tained from Green's work and is for a=90° 

where b has been previously defined for equation 
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2.8 

2.4 

2.0 

1.6 

1.2 

.e 

.4 

0 

a, dag 
16 ooOaa Experiment01 d/c points obtoined with ospect ratio 
20 o m O r r  1.0 flat surface, and plotted at ongle (a-a;) 

6/C 

FIGURE 2.-Green's solution for the lift-curve slope of a two-dimensional flat plate with approximate lines of constant 

(2). Equtition (3) is based on tlie assumption 
tlitit tlie sttignation streamline for the condition 
a=90° is parallel to tlie undisturbed water surface. 

Linearized solution for cambered sections at 
infinite depth.-The case of cambered surfaces a t  
infinite depth can theoretically be analyzed in 
two dimensions by the method of Levi-Civita 
(ref. 7 ) .  However, like many conformal mapping 
problems thc method is very difficult to apply to 
a particular configuration and only ti few specific 
solutions hive been obtained. Among thcse is 
the work of Rosenliead (rcf. 8) and that of Wu 
(ref. 9). Although the solution of Wu is applica- 
ble in principle to arbitrary sections, i t  litis bccn 
carried out only for the circular arc. A ptirticuliir 
advantage of Wu's solution is that i t  includes the 
effects of nonzero cavittition nunibcr. 

The most useful trciitmcnt of cambercd surftkces 
is the linctirizcd tlicory of Tulin and Burkart (ref. 
1) which is rcadily applic.t~blc to any surfticv con- 
figuration (with positive lowcr surfwc pressures) 
as long ILS t,hr t~r ig l~  of iLttwli and carnbcr tire small. 
The principii1 rcsnlts of this linearized theory arc 
sumninrizcd tis follows: 

The supercavitating hydrofoil problem in the 
2-plane is transformed into an airfoil problem in 
the z-plane by the relationship Z= -4z. If prop- 
erties of tlie equivalent airfoil are denoted with 
barred symbols and those of the hydrofoil, with 
unbarred symbols, the following relationships are 
derived: 

- 

( 5 )  

( 7 )  

The coefficients A ,  are the thin-airfoil coefficients 
in tlie sine-scrics expansion of tlie airfoil vorticity 
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distribution 

A , c o t ~ + ~ A . s i n n B )  n= 1 (10%) 

where 

(lob) 

The A coefficients can be found for a given con- 
figuration from the following equations: 

1- 
2 z=- c (1 -COS e) (0 5 e5 n-) 

The first term in equation (loa), that is, the A, 
term, represents the vorticity due to incidence with 
the stream and the second term represents that 
due to camber. The coefficient A, may be sepa- 
rated into two parts A,’ and CY as shown in equa- 
tion ( l la ) .  The term A,’ is the value of the inte- 
gral expression involving the local slope of the 
hydrofoil when its reference axis is a t  an angle of 
attack of 0’. The usual reference axis of an airfoil 
section is the chord line or line joining the leading 
edge and trailing edge; however, any line passing 
through the leading edge may be used as the refer- 
ence axis. A more convenient reference axis (for 
the purpose of this report) is the line which makes 
the integral expression A,’ in equation ( l la )  zero. 
When this particular axis is used, the total coeffi- 
cient A, is then simply the angle of attack a, and 
when a is zero, A, is zero and all the lift is produced 
by the camber. 

When A, is set equal to zero, the hydrofoil lift- 
drag ratio for a given lift coefficient is obtained 
from equations (7) and (8) as follows: 

Obviously, for maximum lift-drag ratio, -A21Al 
must be as large, as possible. However, if the 

58611&61-2 

assumed condition that a cavity exists only on 
the upper surface is to be real, the vorticity dis- 
tribution given by equation (10) must be positive 
in the interval 0 se S T ,  that is, the pressure on 
the hydrofoil lower surface must be positive over 
the entire chord; otherwise, a cavity will exist on 
the lower surface. Thus, for maximum hydrofoil 
lift-drag ratio, - A2/A1 must be as large as possible 
and still satisfy the condition that 

m 

Q(Z)=2VCAn sinn8hO (OSOSn-) (13) 

Tulin-Burkart section: With the stipulation 
that the vorticity distribution is defined by only 
two terms in equation (13), reference 1 finds the 
optimum relationship between A, and A2 as 

n=l 

--=-. This relationship results in a hydrofoil 
Ai 2 

configuration given by the equation 

From equation (7) the design lift coefficient (that 
is, for a=O) for this section is 

and the lift-drag ratio for this condition as ob- 
tained from equation (12) is 

L 25 R 

0=4 a 
Since r12CL represents the lift-drag ratio of a flat 
plate, the configuration given by equation (14) 
has a lift-drag ratio 2514 times as great as that of 
the flat plate. When the hydrofoil given in equa- 
tion (14) is operated at  an angle of attack, the 
lift-drag ratio becomes 

n 

I n  reference 1 it is pointed out that shapes superior 
to the one given by equation (14) are possible. 
Two such superior shapes are derived in the fol- 
lowing sections. 

Three-term section: When t h e  vorticity 
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distribution is defined by three terms, equation 
(13) becomes 

(18) 

The solution of equation (18) is obtained in the 
following manner. Let 

Q(Z)=2V(A1 sin e+A, sin 2e+A3 sin 38) 2 0 

Equation (12) shows that maximum lift-drag 
ratio for a given lift coefficient is obtained by 
making the ratio -A2/Al as large as possible. 
The problem is now to find a2 and a3 so that a2 
is a maximum and 

sin 8-a2 sin %+a3 sin 3e2-0 (O$OZi) (21) 

Substituting trigonometric identities for the 
functions of the multiples of e, equation (21) may 
be written as 

1 - 2 ~ ~  cos e+3a,-4a3 sin2820 (22) 

The minimum of equation (22) occurs when 

Substituting this value of 0 into equation (22) 
gives 

or 
4 ~ ~ - 4 a ~ ~ - a ~ ~ h O = h  (hZO)  (24) 

Therefore, 
a2= &-d4a3-4a$-h (25) 

and the term under the radical has a maximum a t  
1 

a3 = 5- Thus, 

a2= +Jl--h (26) 
and the maximum possible value of a2 is 1 which 

1 occurs when h=O and a3=2. Sirice these values 

are obtained by considering the minimum value 
of the vorticity or pressure on the airfoil, the 

condition O(T) 2 0  is satisfied for all values of e 
( 0 5 8 5 ~ ) .  Thus the solution for the vorticity 
distribution for the three-term section is 

1 
2 sin e-sin 2e+- sin 38) (27) 

The airfoil slope which has the vorticity distri- 
bution given by equation (27) is obtained from 
reference 10 and is given as follows: 

When trigonometric identities are substituted for 
the functions of the multiples of 0, equation (28) 
becomes 

- 
X and since cos e= 1-2 = c 

dG -& (T)=A1 [z (1-2 

-2 (1-2 iy-i (1-2 3 + 1 ]  (30) 

The slope of the equivalent hydrofoil as obtained 
in reference 1 is given as follows: 

Equation (31) states that the slope of the hy- 
drofoil can be obtained from equlttion (30) by 
replacing Z with 4;. 

Thus, since 7=&, 

dy=a,[3 dx ( 1 - 2 g J - 2  (1-2-$7 

-1 2 (1-2-$)+1] (32) 

Integrating from 0 to x and dividing both sides by 
c gives the desired nondimensional hydrofoil shape ; 
that is, 

By using equation (7), the lift coefficient of this 
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hydrofoil becomes 

cL=; 

or for a=O, the design lift coefficient is 

(34) 

(35) 

The following drag coefficient may be obtained by 
using equation (8): 

For a=O, the lift-drag ratio is 

L 7 r  
D=g 2CL - (37) 

This value is nine times as large as that for a flat 
plate and 1.44 times as large as the value for the 

hydrofoil of reference 1 where -=-----. The 

following lift-drag ratio may be obtained for finite 
angles of attack by dividing equation (34) by 
equation (36) 

L 25 ?r 

D 4 2CL 

2 
L a+, CL,d 

D= (38) 

Five-term section: Another hydrofoil section 
which theoretically has lower drag than either of 
the previously discussed profiles can be obtained 
by assigning five terms to equation (13) and finding 
the coefficients in the resulting equation; that is, 

52@)=2V(A, sin efA, sin 2e+A3 sin 319 

+A, sin 4B+A5 sin 50) (39) 

so that Q(Z)  2 0  and -A,/A, is a maximum. 
First attempts a t  a solution were made on a 

Fourier synthesizer. The synthesizer is an elec- 
tronic device which is capable of generating 80 
harmonics of a Fourier series and recording the 
summation of these components over any desired 
interval. The amplitude and phase angle of each 

harmonic generator is controllable. By using 
only the first five components and zero phase 
angle, it was discovered that a solution with 
-A,/A, roughly equal to 1.6 was apparently 
possible. Unfortunately, the sensitivity of the 
equipment was not sufficient to assure positive 
values of the summation of components near the 
leading edge. However, the synthesizer result 
was encouraging, since it showed that there was 
a considerable advantage to using five terms, and 
revealed some of the characteristics of the solution; 
for example, the algebraic sign and relative magni- 
tude of each term. The most helpful method for 
obtaining the best results was that used in ob- 
taining the three-term solution. This was to find 
first the minimums of equation (39) in terms of 
the coefficients. The term -A,/A, was then 
assigned a value and the other coefficients were 
determined analytically so that three of these 
control points (possible minimums) were zero and 
the values of the others were examined. By 
varying the value of -A2/A1 and the choice of 
control points, a solution was obtained. The 
method is one of trial and error and, since the 
process is somewhat lengthy, the details are 
omitted. The best solution obtained was 

Q(Z)=2VA1 sin e-: sin 28 ( 
4 2 1 

3 3 +3 sin 319-- sin 48+- sin 58) (40) 

I n  the course of deriving the solution it was 
proven that the value of -A,/Al must be less 
than 2/2: Since in the solution given by equation 
(40) the term -A,/A, has a value of 4/3 (very 
close to the established maximum), further efforts 
to find a better solution were not considered to 
be worthwhile. 

By following the method used for the three- 
term solution, the shape of the hydrofoil corre- 
sponding to  equation (40) is obtained as follows: 

!!,A c 315 [210 (:)-2,240 (:J’2+12,600 (:>2 

(41) 

If equation (7) is used, the lift coefficient of 
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this hydrofoil may be given as 

or for a=O the design lift coefficient is 

5~A1 
c L , d = T  (43) 

The following drag coefficient is obhined by using 
equation (8) : 

and for a=O the lift-drag ratio is 

L 100 P 
D = T 5 L  (45)  

This lift-drag ratio is about 11 times as large as 
the value for a flat plate and nearly twice as effi- 
cient as the configurstion of reference 1. 

For finite angles of attack, the lift-drag ratio is 
given by the Iollowirig equation : 

n 

Circuliwarc section : Because of the geometrical 
simplicity of the circular-arc profile, it is desirable 
to include its characteristics so that the circular 
arc may be compared with the other low drag 
sections. If the central angle subtending the 
chord is denoted ILS y and the chord line is used 
as the reference axis, the coefficients for the 
circular arc deterinined from the linearized the- 
ory are: 

no’=-? 8 (47a) 

A,=O (n>2) (474 

For the reference axis used, A,’ is negative; 
tlierc.fore, positivc lowcr surfacc prcssurcs cannot 
possibly be rctilizrd nrar tho leading edge unless 

the angle of attack is increased at least to the 
point where a-Y-O. 8- Because A,=O for n>2 

and A, sin 0+A2 sin 20 is everywhere positive in 
the interval OSOgs,  the condition a--=0 is 
sufficient to specify positive pressures over the 
entire chord of the hydrofoil. A convenient way 
of treating the circular-arc section to make it 
comparable to the other low drag sections is to 
reorient its reference line an angle - above the 
chord line so that for this orientation Ao‘=O and 
a=O. When this new reference line is used, the 
lift coefficient of the circular-arc section is 

Y 
8 

Y 
8 

cL=; (a+G 9 7) 

or for a=O the design lift coefficient is 

The following drag coefficient is obtained by using 
equations (8) and (47) 

and for a=O the lift-drag ratio is 

This lift-drag ratio is about 5 times as large as 
the value for a flat plate and almost as great as 
the Tulin-Burkart section. For finite angles of 
attack 

, 2 ,  
a+- c L . d  L P 

Comparison of sections.-The shape of the four 
sections discussed in the preceding paragraphs are 
shown for comparison in figure 3 .  It may be 
noted that the Tulin-Burkart and circular-arc 
sections are very similar. Also i t  should be noted 
that the location of maximum camber moves 
progressively rearward with increasing magnitude 
of the parameter -A2/A,. 

Pressure distribution: From equations (6) and 
(10) and the linearized Bcrnoulli equation, it can 
be show11 that the prcssure distribution over the 
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._ 
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X / C  

FIGURE 3.-Lower-surface profile of four low-drag super- 
cavitating hydrofoil sections. a=Oo ; infinite depth. 

hydrofoil chord is for A,,’=O 

or, when the two components are separated into 
the contributions of angle of attack Cp,a and 
camber C,,,, 

and 
A, C,,,=2A1 - sinne 

n=l A1 (55) 

In equations (54) and (55) the location on the 
hydrofoil corresponding to a given value of e can 
be found from the relationship 

since -= = . For a given hydrofoil A1 defines a 

particular value of the hydrofoil lift coefficient at 
a=O; that is, the design lift coefficient c L , d  as 
given by equations (15), (35), (43), and (49). 
Therefore, with the aid of these equations, 
equation (55) can also be written in terms of 

. C “(5)’ 

c L , d  as 

Thus the total-pressure distribution on the hydro- 
foils can be obtained from 

(57) 

Equations (55) and (57) are plotted in figure 4 for 
the four hydrofoils under consideration. It is 
apparent in figure 4(a) that the location of the 
maximum pressure moves aft with an increase in 
magnitude of -AA,/Al. I t  may also be seen that 
the adverse pressure gradient to the left of the 

3.0 

2.0 

I .o 

0 

X 
c - 

(a) Contribution due to camber. 
(b) Contribution due to  angle of attack. 

FIGIJRE 4.-Pressure distribution on four low-drag super- 
cavitating hydrofoils. a = O o ;  infinite depth; 

( C p ~ h t a I = - c L . d + ~ .  C P  C P  

C L  .d 

pressure maximum also increases as -A2/A1 in- 
creases. Thus, the five-term hydrofoil is more 
susceptible to boundary-layer separation than the 
other two hydrofoils. If such separation occurs, 
the pressure distribution shown will be considera- 
bly altered. This condition, of course, also applies 
to the other three sections but to a lesser degree. 

The small pressure “humps” near the leading 
edge of the three- and five-term hydrofoils are 
peculiar to the solutions found but could be elim- 
inated by proper adjustment of the coefficients. 
However, the existence of these “humps” is prob- 
ably not important in a practical configuration. 

Lift-drag ratio: The lift-drag ratios given by 
equations (17), (38), (46), and (52) are compared 

in figure 5. The relationship o=zL for a flat plate 

is also included. The great improvement over 
the LID of a flat plate offercd by positively cam- 
bering the lower surface and operating at  the 
design angle of attack is most encouraging. How- 
ever, a comparison at what amounts to a fictional 
design angle of attack is not justified. From a 
structural stsandpoint, hydrofoils wit,h the thick- 
ness required for strength must be operated at  
positive angles of attack in order for the cavity to 
form from the leading edge. Operation a t  positive 
angles of attack reduces the lift-drag ratio as 
shown by the dashed lines in figure 5. Thus t’he 
maximum lift-drag ratio for any section depends on 
the minimum angle a t  which it can be operated 

L s  
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FIGURE 5.-Lift-drag ratios for low-drag hydrofoils calcu- 
lated from two-dimensional linearized theory. 

with t i  cavity from the leading edge. A meaning- 
ful comparison of the hydrofoil sections just dis- 
cussed is not possible unless the influence of the 
upper surface of the hydrofoil is also included for 
it is this surface which controls the max:mum lift- 
drag ratio of the section. If infinite speed and 
thus zero cavitation number are assumed, it is 
clear that, if any portion of the upper surface 
becomes wetted, the lift will decrease and the drag 
increase. Thus, a lrnowledge of the profile of the 
given hydrofoil upper surface combined with the 
location of the upper cavity streamline a t  various 
angles of attack will permit the prediction of the 
angle of attack a t  which the maximum lift-drag 
ratio will occur. Only on the basis of maximum 
lift-drag ratio can the best supercavitating hydro- 
foil be selected. A comparison of the various 
sections based on calculated cavity streamline 
locations and hydrofoil thickness is presented 
subsequently. 

The practical use of the formulas presented in 
the preceding discussion is also limited by the 
assumptions made in their derivation. The re- 
strictions imposed by the assumptions of the lin- 
earized theory prevent its use in the calculatio~l of 
the chnracteristics of hydrofoils suitable for use 
as aircraft landing gear. Here, because of the 
high loads on necessarily thin hydrofoils, the as- 
pect ratio may have to be as low ILS 1 or 2. Also 
the hydrofoil must operate netir the free wtiter 
surface rind in some instances tit large tingles of 
attack. Thus, the effects of these varitibles on the 
charactcristics of superc.avitatir1.g hydrofoils ( p w  
ticularly of cambered sections) is needed. Much 
of this information can be obtained by additional 

application of the linearized theory combined 
with certain modifications to the two-dimensional 
theory discussed in preceding paragraphs. 

MODIFICATIONS OF INFINITE DEPTH THEORY 

Nonlinear equation for lift at  infinite depth.-- 
If a=O refers to the reference line which makes 
A,,'=O, then equation (7) may be written as 

where ac is the effective increase in angle of attack 

due to camber AI----. Thus, the solution for 

cambered hydrofoils is merely the flat-plate 

linearized solution a with a replaced by a+aC. 

This is exactly analogous to the influence of cam- 
ber on airfoils in an infinite fluid where there is 
an effective increase in angle of attack due to the 
camber. By carrying this procedure further and 
by applying it to the resultant force rather than 
to the lift, the nonlinear solution of Rayleigh (see 
eq. (1)) becomes applicable to arbitrary configu- 
rations simply by replacing a by a+a,; that is, 

A* 
2 

2 

2n sin (afa,) 

'~"4+nsin(a+a,) 

The lift will then be 

(59) 

In equation (60) p = ( ~ + e ,  where e denotes the 
deviation of the resultant-force vector from the 
normal to the hydrofoil reference line. For large 
values of a, e is small compared with a and cos /3 
=cos (Y. When CY is very small, e is a niaximum 
and will almost always be less than about 3' for 
which the cosine is very nearly 1 or cos(a+e) = 
cos a = 1. Therefore, cos 0 in equation (60) may be 
replaced by cos (Y with little loss in accuracy nnd 
a great gain in simplicity. Equation (60) then 
becomes 

For a circular-arc hydrofoil of central angle Y, 

it htis been shown in equation (48) that a,=% Y. 

It has also been shown that for the circular arc 

9 
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the reference line must be chosen a t  an angle 
-718 to the chord line so that Ad=O. The 

result obtained by substituting CY.~=E 7 into equa- 

tion (61) is compared in figure 6 with the linear 
solution of Tulin and Burkart (eq. (58)) and the 
nonlinear solution of Wu (ref. 9) for two circular- 
arc profiles. The agreement of equation (61) 
with the more exact solution of Wu is good over 
the entire range of angle of attack from 0' to 90'. 
Similar agreement is expected for any configuration 
of small camber. 

The successful modification of the Rayleigh 
equation to include cambered configurations leads 
a t  once to a similar modification of the solution of 
Green. (See ref. 2.) However, in this case the 
argument for replacing a by a+a, is very weak 
unless the section coefficients which determine a, 
are known as the depth varies from infinity to 
zero. 

Linearized solution for lift of cambered sections 
at finite depth.-An examination of the linearized 
expressions for the lift coefficient of arbitrary hy- 
drofoils a t  infinite depth and at  zero depth reveals 
that both the lift-curve slope and the increase in 
angle of attack due to camber change with depth 
of submcrsion. At infinite depth the linearized ex- 
pression for lift coefficient is given by equation 
(58). At zero depth the lift coefficient must be 
one-half of the fully wetted value obtained from 
thin-airfoil theory as pointed out in reference 11; 

9 

.6 

.5 

.4 

c, 
.3 

.2 

. I  

0 

- _ -  

IO 20 30 40 50 60 70 BO 90 
a, deg 

FIGURE 6.-Two-dimensional theories for the lift coeffi- 
cient of a circular-arc hydrofoil at infinite depth. 

that is, 

where Aosh and AI.* are the thin-airfoil coefficients 
of the section in the hydrofoil plane and are given 
by the expressions 

For the Tulin-Burkart section at  an angle of at- 
tack of Oo, these values may be determined as 

A ,  = 0.22 7A1 (644 

Ai.*= 1.151A1 (64b) 

Thus, from equations (58) and (62) i t  is seen that, 
for a flat plate a t  small angles, the lift coefficient 

goes from CY. a t  infinite depth to ~a at  zero depth 

(as given by Green, ref. 2) whereas, for the Tulin- 
Burkart section (ref. 1) a t  an angle of attack of 0' 

these values are g(1.25A1) a t  infinite depth and 
?r(0.802A1) at zero depth. Although the flat-plate 
lift coefficient doubles in going from infinite to 
zero depth, the ratio is only 1.28 for the cambered 
section. The important point to note is that the 
value of a, for the Tulin-Burkart section changes 
from 1.25A1 to 0.802A1 as the depth changes from 
infinity to zero. 

It is now desirable to determine ac for finite 
depths of submersion. This value may be ob- 
tained by modifying the linearized theory of refer- 
ence 1 to include the effects of the free water 
surface. 

Exact linearized solution: The effect of the free 
water surface may be obtained by finding the 
transformation which will map the free water sur- 
face, the hydrofoil, and the cavity streamlines into 
the real axis of an auxiliary or equivalent airfoil 
plane - denoted as to distinguish it from the 
Z-plane used a t  infinite depth. The transforma- 
tion required is 

(65) 
d z=; (S-1-log, s) 
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where d is the depth of submersion of the leading 
edge, or more exactly the spray thickness 6. The 
2-plane and it.s transformation in the {-plane are 
shown in figure 7. In  the linearized theory de- 
veloped in reference l points of corresponding per- 
turbation velocities u and v remain constant in the 
transformation; therefore, the boundary condi- 
tions shown in the 2-plane are shown in the {- 
plane in their corresponding locations. The 
potential-flow problem shown in the {-plane is 
exactly the thin-airfoil problem. I t  is well- 
known that the thin-airfoil problem can be 
solved by distributing vortices along the chord so 

that the condition !=E V is satisfied. (See ref. 

lo.) The desired distribution of vorticity is a(Z) 
as given in equation (10%). With a(Z) known, 
Z(T)  and !@) are known. These values of Z and Z 
on the airfoil are exactly the same as the values of 
u and v on the hydrofoil if the relationship be- 
tween x and ? satisfies the equation 

d7 

d -  r=- [x-log,(l+:)] 
x 

Equation (66) is obtnined directly from equation 
(65) by noting that {= 1 +Z. Dividing equation 
(66) through by c gives 

X 
c ?rc 
-=if4 [?-log, (1 + E ) ]  (67) 

I 

(t i )  %-plane. 
(1)) f-plnne. 

FIGURE 7. -- Trtinsfornitttion of hydrofoil at finilo tltyth 
to equivalent airfoil. 

When -=l, X Z=C; therefore, 
c 

d x 
c c-log, (1f-Z) 
-=- 

By using equations (67) and (68) the relationship 

between ; and may be determined for both 

positive and negative values of =. It can be seen 
c -  

in figure 7 that negative values of ; correspond 

to points in front of the airfoil which in turn are 
related to points on the upper-cavity streamline. 

The relationship between = and - is presented in 

figure 8. With the aid of figure 8 and a lmowl- 
edge of thin airfoil theory, the solution to the 
supercavitating hydrofoil problem at  finite depth 
is L‘easily” determined. The word “easily” refers 
to the comprehension of the solution; the actual 
labor is considerably involved because of the 
necessity to resort frequently to numerical 
integra tion. 

The procedure for determining the pressure 
distribution and thus the forces and moments on 
a hydrofoil a t  arbitrary depth is as follows: 

(1) The shape of the hydrofoil is known as 
y=y(z) and thus 

- 
X 2 

- 
X 

X 

- 
2 X 
C c 

@=d7J 
dx dx dx c 

or dy - (-) x 

I O  

s 
- . E  

E - 
.6 

2.4 
v) 
c 

- 
> 
0 0 

& .2 
n n 
3 

‘1.0 -.E -.6 -.4 -.2 0 .2 .4 .6 .E 1.0 m 
FIGURE 8.-The infliicnce of depth of submersion on 

tlic relationship between points in hydrofoil and 
equivalent airfoil planes. 
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A 

d 

* 

( 0 )  

( 2 )  The slope of the equivalent airfoil at the 

point(g)is exactly the same as the slope of the 

hydrofoil (?) when ; and are related as shown 
- x x  

a x  c c 

;Water surfoce , . . ~=o  

.Cavity upper surface 

,..-u = 0 

I :  X 
I \  *: c , ' U . 0  

'~,. = v &- ".Cavity lower surface 
dx 

in figure 8. Thus 

(3) The vorticity distribution on the airfoil is 

(4) The perturbation velocity 5 in terms of the 
then obtained from equations (10) and (11). 

vorticity Q is given by the equation 

(69) 

- 
Thus the velocity E (E) is determined a t  every 

point along the airfoil. 

(5) The perturbation velocity u on the 

hydrofoil is exactly tthe same as the velocity 

E (3 if and ; are related as shown in figure 8. 

Thus, the velocity u 

(6) Step (5) also determines the linearized 
pressure coefficient since C, is given by tbe 
equation 

(3 
- 

5 

is determined. (3 

or 
e C, (:)=Ao cot -+EAn sin ne (70) 2 

X 
c where e is related to - by equat,ion (lob) and 

figure 8. 

(7) Wit,h a knowledge of C, - the lift, drag, (3 
and moment coefficients are determined as 

c.=6' c, (,) a J: C 

c,= I' c, (:): - -a- : 
cD=L c, (?) c ax d?J d ? c (71b) 

(7 1 4 

Approximate solution: The calculations by the 
exact linearized method were rather tedious and 

586118-61-3 

this method of solution was set aside when an 
approximate method was discovered. The ap- 
proximate method continues with the simple 
transformation z= -4z used in reference 1. The 
advantage of the simpler transformation is that, 
if the vorticity distribution in the presence of the 
water surface can be determined in the 2-plane, 
the simple equations (7) and (9) for the lift and 
moment coefficient will still be applicable. 

In  figure 9 it may be seen that z=-Jz trans- 
forms the free water surface in the hydrofoil plane, 
where u=O (see fig. 9(a)), into a hyperbola in the 
third quadrant of the airfoil plane (fig. 9(b)). 
The boundary condition that must be satisfied on 
this hyperbola is that the perturbation velocity 'ii 
be zero because, in complex velocity problems of 
the type considered here, the lines of constant 
velocity are transformed and not the lines of con- 
stant velocity potential or the stream function. 

Tronsfarmed cavity _,,: 
lower surface .- 

Transformed ,,,,' 

woter surface ' 
Z j  = d/2  

( b )  I I  
(a) Hydrofoil, 2-plane. 

(b) Equivalent airfoil, 2-plane. 

FIGURE 9.-The linearized boundary conditions in the 
hydrofoil 2nd equivalent airfoil planes using 

Z= - &Z transformation. 
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For the particular case of zero depth the hydro- 
foil problem is transformed by Z = - e  into the 
fourth quadrant of the airfoil plane. Thus, it 
may be seen in figure 9(b) that the free water 
surface adds the condition that Z=O along the 
negative 7-axis. This additional boundary con- 
dition can be satisfied (along with the other in- 
finite-depth boundary conditions) by locating an 
image of the airfoil-vorticity distribution along 
the negative x-axis. The direction of this vor- 
ticity must be opposite to that of the airfoil in 
order to make Z=O at all points along the nega- 
tive y-axis. A simpler and often used approxi- 
mation is to replace the distributed image vorticity 
by a single vortex, equal in strength to the airfoil 
circulation, a t  a location equal to the distance 
from the leading edge to the airfoil center of pres- 
sure as shown in figure 9(b). 

For finite depth of submersion, the condition 
is that Z=O must be satisfied a t  all points on the 
hyperbola and on the negative y-axis. It is not 
possible to satisfy these conditions with a single 
vortex as wm done for the case of zero depth. 
However, the influence on the airfoil of the infinite 
array of vortices needed to satisfy the boundary 
conditions shown in figure 10 may be approxi- 
mated by a single vortex of strength r in the 
location shown. The adequacy of the approxima- 
tion can be determined by calculating the effect 
of this image vortex on the lift of a flat plate 
as the depth of submersion is varied and then 
comparing the result with the exact solution of 
Green. This depth efl'ect may be determined by 
concentrating the airfoil circulation a t  its center 
of pressure and the image circulation at  a point 

'1 Transformed 
water surface 

FIGURE 10.-Liiiearixed inodol in Z-pluiie for citlculting the 
effect of depth of subinersioii on the lift coc%cient of u 

flat plate. u = 0. 

- 
c+Z# G forward of the leading edge and ?-$ 2 c  4 
below the leading edge (see fig. 10) and computing 
the total downwash on the flat plate a t  its 3C/4 
point. (See ref. 12.) The method assumes that 
the center of pressure of the airfoil remains 
constant a t  /"4 as the depth changes. The 
resulting downwash angle CY a t  the 3Z/4 point is 
calculated to be 

The ratio of hydrofoil lift a t  finite depth to the 
lift a t  infinite depth is 

Therefore, since rm =nCaV, 

Equation (74) is compared in figure 11 with the 
exact solution of Green (see fig. 2, a=O), and the 
agreement is excellent. 

The adequacy of the method used in deter- 
mining the influence of free water surface proximity 
on the lift of a flat plate justifies its use on 
cambered hydrofoils. However, for cambered 
hydrofoils the problem is more difficult because 

- Exoct solution, Green (a=O) 
o Calculated from equation (74) 

I I I I ._ 1- 1 - i I I  
0 1.0 2.0 3.0 4.0 5.0 

d/c 

FIGI'RE 1 l.-Compitrison of lineitriecd solution with exact 
solutioii for the effect of depth of submersion on the lift 

coefficient of a flat plate. u=0. 
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a control point such as 3Z/4 for a flat plate is not 
sufficient to determine the section coefficients 
defining the complete vorticity distribution a t  
shallow depths. This final vorticity distribution 
Q(i) resulting from the camber and the image 
vortex must be determined, particularly if a 
knowledge of the pressure distribution and thus 
the drag and center of pressure is desired. 

In  figure 12, it may be assumed that the final 
vorticity distribution on the equivalent airfoil is 
given by the equation 

Then the induced velocity a t  5' due to a(:) is, 
from thin-airfoil theory (see ref. l l ) ,  

- v=V ( -Co+C nI1 C, COS ne ) (76) 

The resulting total circulation due to the vor- 
ticity given by equation (75) is, from thin-airfoil 
theorv. 

V I  

Since the image vortex has a strength equal and 
opposite to r, the velocity induced by rr a t  an 
arbitrary point Z' on the airfoil is 

n 

(78) 
- I' v .=- cos 4 ' 27rrz 

where 

r= 

cos #= r 

..Center of pressure 

x 

FIGURE 12.-Linemiaed model in 2-plane for calculating the 
effect of depth of submersion on the vorticity 
distribution of the equivalent airfoil section. 

or 

where 
En& 
CL 

a== 

or 

- 
Replacing Z' by 

expanded in a Fourier series as 

(1-cos e)? equation (79) can be 
2 

where 

and 

Substituting equations (77) and (81) into equa- 
tion (78) gives 

The equivalent airfoil slope dV - when expanded 
dJ: 

in il cosine series is 

Z=-A, ,+~ n=l A, cos ne (83) 

Equating the resulting streamline slope to the 
equivalent airfoil slope gives 

(842 

The substitution of equations (76), (82), and (83) 
into equation (84) gives 

m 

-Co+C C, COS ne+ 
n=l 

m 

=-A,,+C A, cos nd (85) 
n=l 
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By equating coefficients of like terms, the C 
coefficients are determined as 
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If AO=a and A,=O where n 2 1 ,  the effect of 
depth of submersion on the lift Coefficient of a flat 
plate ciin be computed from the coefficients ob- 

tained from equations (86). The values of __ 

computed by this method have been found to be 
in excellent agreement with the solution of Green 
for a=O. 

For the particular condition of Ao=O (the case 
of hydrofoils such as the Tulin-Burlrart section 
at  zero angle of attack) equations (86) become 

CL 
CL, m 

(874 

(87c) 

The coefficients Bo imd B, as obtained from 
equation (til) are plotted in figure 13 against the 

2 

BO 
I 

0 
4 

3 

81 2 

I 

O .I 2 .3  .4 .5 .6 .7 .8 .9 
u, chords  

(a) BO and BI.  
FIGURE 13.--Thc B cocfficiciitu. 

I I .o $0 

B3 .5 \ 

.071 
I I .5 

8 4  
.071 

0 .I .2 .3 .4 .5 .6 .7 .8 .9 
u ,  chords  

(b) &, &, and B1. 

FIGURE 13.-Concluded. 

distance to the center of pressure a for several 
depths of submersion. For the special condition 
of zero depth the B coefficients for the Tulin- 
Burkart section are found to be 1.296, 0.772, and 
0.22 for Bo, U,, and BS, respectively. In making 
this computation, the final center-of-pressure 
location a is used; therefore, a is first given an 
assumed value, the B arid 6' coefficients deter- 
mined, then from the resulting C coefficients, a is 
calculated from equation (SO) and the procedure 
repeated if necessary. For the Tulin-Burkart 
section a is found to be 0.42 for dlc=O. By using 
the final B coefficients the C coefficients are 
determined from equations (87) as 0.595A1, 
0.646A1, and -0.61A1 for Po, Cl, and P,, re- 
spectively. 

The lift coefficient of the Tulin-Burkart section 
a t  zero depth may be obtained by substituting the 
C coefficients obtained in the previous paragraph 
for the A coefficients in equation (7). The ratio 
of the lift coefficient a t  zero depth to the lift a t  
infinite depth is 

-. - - 
4 

The value 1.24 conipares favorably with the more 
exwt  value of 1.28 given previously. Tlie results 

for the Tulin-Burkart section ('L of dculii t ing __ 
C7L, m 

tilong with the other three sections being con- 
sidered are plotted in figure 14. 



~~~~~ ~~~~~~ 

INVESTIGATION OF SUPERCAVITATING HYDROFOILS OPERATING NEAR FREE WATER SURFACE 19 
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d/c  
0 1 2 3 4 5 6 7 8 9 1 0  

FIGURE 14.-Influence of depth of submersion on the 
lift coefficient of cambered sections operating at 

the design angle of attack. a = O o .  

The true linearized lift-curve slope m for finite 
depths of submersion in the equation CL=m(a 
+a,) is that shown in figure 2 for a=O. There- 
fore, the effective angle of attack due to camber a, 
is obtained from the following relationship : 

Values of 2% are plotted against dlc for the 

Tulin-Burkart section and the other three sections 
in figure 15. 

Equation (89) is obviously limited by the lin- 
earizing assumptions made in its derivation. An 
important limitation is that due to the assumption 
that the free surface is always horizontal and thus 
6/c=dlc. At small depth-chord ratios and par- 
ticularly for large magnitudes of camber, the free 
water surface is not horizontal and G/c>d/c. 
Thus, for small values of d/c and large magnitudes 
of camber the values of (Y~/(Y,,~ given in figure 15 

a,, m 

d/c 

FIGURE 15.-Influence of depth of submersion on the 
effective angle of attack ac of cambered sections 
operating at the design angle of attack. a=Oo.  

are probably too low. 
Nonlinear equation for lift at finite depth.- 

With a knowledge of the angle of attack due to 
camber a, at  finite depths of submersion, Green's 
solution is now modified to include camber by 
treating the effective angle of attack as afa,, 
where a, is obtained from figure 15. This method 
is exactly the method used in modifying the Ray- 
leigh equation to obtain the nonlinear approxima- 
tion for the lift coefficient a t  infinite depth. 
With this assumption, the resultant-force coeffi- 
cient for a cambered hydrofoil a t  any positive 
depth of submersion is obtained in terms of the 
spray thickness 6/c from equations (2) as 

Equation (90) states that the resultant force on a 
cambered section is approximated by replacing a 
in Green's solution for a flat plate by the effective 
angle of attack a+a,. It will be shown that the 
resultant force will deviate only slightly from the 
normal (as previously pointed out for the condition 
of finite depth) and therefore the nonlinear equa- 
tion for determining the lift coefficient of cambered 
sections a t  arbitrary depth is 

e&) = cN,,(a+ac)cos a (91) 

Three-dimensional theory at finite depth.-- 
The preceding two-dimensional theory can now 
be modified to include the effects of finite span. 

Lift: The flow about a supercavitating hydro- 
foil may be constructed by a suitable combination 
of sources and vortices. The vortices contribute 
unsymmetrical velocity components and lift ; the 
sources contribute symmetrical components which 
provide thickness for the cavity but no lift. Since 
for a finite span a system of vortices cannot end 
at the tips of the foil, a system of horseshoe vortices 
must be combined with the sources to describe the 
flow. If the assumption is made that the influence 
of finite span on the two-dimensional lift coefficient 
is due to the effects of the trailing vorticity, then 
the resulting effect of aspect ratio is exactly the 
same as that for a fully wetted airfoil. Jones 
(ref. 13) gives the lift of a fully wetted elliptical 
flat plate as 

1 
E 

- c,=- 27r(a-a*) 
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where E is the ratio of semiperimeter to the span 
and ai is the induced angle of attack caused by the 
trailing vorticity. Thus the effect of aspect ratio 
is to decrease the two-dimensional lift-curve slope 
by a factor 1/E and to decrease the effective angle 
of attack by an increment at. Therefore for the 
fini t e-aspec t-ra tio supercavi tating hydrofoil a t  in- 
finite depth, equation (58) is modified to give 

(93) 

or more generally for finite depth, equation (91) 
becomes 

where for rectangular plan form of aspect rnt'io A, 
A+ 1 E=.---and A 

(95) 

where  is a correction for plm form. (See ref. IO.) 
Another effect due to finite aspect ratio is the 

concept of additional lift due to crossflow. (See 
refs. 14 arid 15.) This crossflow lift is assumed 
to be due to the drag on the hydrofoil contributed 
by the component of free-stream velocity normal 
to the hydrofoil plan form. In the present case 
of zero cavitation number, the crossflow drag 
coefficient is the Rayleigh value, 0.88. Since this 
lift is caused only by the spanwise flow (flow 
around the ends of tlie plate), it is also modified 
to account for the effect of aspect ratio by tlie 
Jones' edge correction 1/E. Since only the spnn- 
wise flow is considered, E is now the ratio of tlie 
semiperimeter to the chord. Because the flow 
being considered is normal to the plate, the in- 
duced angle for this flow is zero. Thus for a flnt 
plate, the crossflow lift CL,c is 

0.88 sin% cos a 1 c,,,=m 

No espcrimen t d  or thcoreticd information on 
the crossflow lift of cambcrcd surfaces is uvuilable 
in the litcniture. In order to ripproximate this 
component the following iwsumptions tire mtdc : 

(1) The crossflow forcc ticts normal to the 

hydrofoil chord line. 
(2) The effective direction of the free stream on 

the plate is altered by the increase in angle of 
attack due to camber a,. 
Thus, the crossflow lift on cambered sections is 
assumed to be 

1 
C L , , = m 0 . 8 8  sin2 ( a ' f a , )  cos a' (97) 

where a'=a+aol and a,, is the inclination of the 
chord line to the reference line of the section 
(positive when measured clockwise from the 
reference line) and a, is obtained from figure 15 
for the depth of interest. 

The total lift on a finite-aspect-ratio hydrofoil 
operating near the free water surface is then ob- 
tained by adding equation (97) to equation (94) 
to give 

'4 
(7,(a) =A+1 CnJ (a+ac-ai) cosa 

+L 0.88 sin2 (ala,)  COS^' (98) A+1 

In view of the very ripproximitte nature of 
equiition (97) an esaminiktion of the effect of this 
crossflow term on the total-lift coefficient is 
desirable. For a Tulin-Burkart, aspect-ratio-1 
section (A1=0.2) operating a t  d/e=0.071, the 
ratio of the calculated crossflow lift CL,, to the 
calculated total lift was 0.157 a t  a=4O and 0.283 
a t  a=2Oo. For a five-term section with A,= 
0.075, an aspect ratio of 3, and dlc =0.071, the 
ratio has been calculated as 0.014 a t  a=4O and 
0.072 a t  a=2Oo. Thus any inaccurticies in the 
crossflow lift as computed by equation (97) will 
appreciably affect the total lift coefficient a t  large 
angles, smrtll aspect ratios, and large cambers. 
On the other hand a t  higher aspect ratios and 
small cambers, errors in tlie crossflow component 
do not greatly influence the total calculated lift. 

Equtition (98) may be written in terms of the 
slope m (given in fig. 2) ns 

wlicre a, is obtained from figure 14 for the deptli- 
chord rtLtio of interest arid at  is obtained from 



~~~~~ _ _ _ _ ~  ~ ~ 

INVESTIGATION OF SUPERCAVITATING HYDROFOILS OPERATING NEAR FREE WATER SURFACE 21 

equation (95). The ratio of cosines in the first 
term is necessary because the vector m(a+ac-at) 
is directed a t  an angle (a+a,-ai) from the normal 
instead of the desired a. In  equation (95) CL,l 
is the f i s t  term from equation (99). Equation 
(99) is solved by iteration and the convergence is 
quite rapid. A sample calculation of the lift 
coefficient is given in the appendix. 

Drag: The drag coefficient of a supercavitating 
hydrofoil of fmite aspect ratio operating a t  zero 
cavitation number and finite depth of submersion 
is 

CD=CL,I tan(a+e)+CL,, tan a'+C; (100) 

where CL,l is the f i s t  term in equation (99) and E 

is the deviation of the resultant-force vector from 
the normal. For a flat plate E=O, a'=a, and thus 
CD= C, tan a+ C,. For cambered surfaces similar 
to the circular-arc or Tulin-Burkart section, the 
effect of e becomes very small a t  large angles of 
attack and may be neglected; however, at small 
angles of attack, the effect of E on the drag coeffi- 
cient cannot be neglected. For cambered surfaces 
similar to the three- and five-term sections, e is 
found to have appreciable negative values a t  all 
except very small angles of attack and thus cannot 
be neglected. An approximation to the value of 
e can be made by determining its value from the 
two-dimensional linearized solution and then 
modifying the result for the case of finite angles of 
attack and aspect ratio. Either the rigorous or 
approximate methods of obtaining the linearized 
drag coefficient may be used. The approximate 
solution is obtained in the following manner. 

The linearized drag coefficient as given in 
reference 1 is 

& If 5 is replaced by (l-cos e) and dZ by 

6 sin O d e ,  equation (101) becomes 2 

de (102) 

Now u may be written in terms of the vorticity on 
the equivalent airfoil operating a t  finite depth as 

cD= - (1 -cos e) sin eZF 
V2 

Z=-=V[., D ( x ) + g  i+cos e C, sin 7181 (103) 
2 n=l 

and 

;=V(-A,+g n= 1 A, cos ne 

Therefore 

+CC, sin 7I8] ( - A o + x A ,  cos n8 1 ds (105) 

For the condition where &=a, CD becomes after 
integrating 

r 

( Co+C1+y ')A2-4&] (106) + 

At infinite depth (Co=&, C,=A,), equation (106) reduces to the value given by Tulin-Burkart in 
reference 1 

For &=a, that  is, A,'=(), 
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Therefore 

(109) 

The value of E given by equation (109) is ade- 
quate only for the case of small angle of attack 
and camber and depth-chord ratios larger than 
about 1. At small depth-chord ratios i t  will be 
shown subsequently that the spray angle becomes 
very large even for small angles of attack. When 
such a flow is transformed by z'=-Z,  the cavity 
streamline and the free surface are rotated as 
shown in figure 16. It is obvious from figure 16 
that the boundary conditions are now different 
from the simple Z=O used in the small-angle 
theory. If a system of vortices could be located 

Y 

Water surface .._, 

X 

( 0 )  

- 
Y 

Transformed cavity-..,, 
upper surfoce ,>\ 

---% 

'I Transformed water .' 
surface 

( b )  

- (a) Hydrofoil, Z-plane. 
(b) Equivalent airfoil, %plane. Z= -fl. 

FIGURE 16.-The hydrofoil and equivalent airfoil at large 
angles of attack and sinall depths of submersion. 

to satisfy the boundary conditions along these new 
lines, a solution for the resulting vorticity on the 
foil could be obtained. Such a method would 
involve taking a different calculated spray angle 
for each depth and angle of attack in order to lo- 
cate the image vortex or array of vortices. Also, 
for large angles of attack and spray angles in the 
linearizing assumption of V<<V is not adequate. 
When the lift was calculated, these difficulties 
were avoided by using Green's solution which 
takes the effect of the spray angle into account. 
It can be seen in figure 2 that, as the angle of 

attack increases, the ratio of - cL diminishes ; 
C L ,  m 

therefore, the image vortex must have less in- 
fluence on the resulting hydrofoil vorticity for 
large angles of attack. An approximation to the 
correct hydrofoil-vorticity distribut,ion for finite 
angles of attack operating near the free water sur- 
face can be obtained by using the model shown in 
figure 12, and increasing the value of d/c  used so 

corresponds to that CL that  the resulting __ 
C L ,  m 

given by Green. Thus, for large angles of attack, 
camber, and finite aspect ratio an effective depth 
of submersion, (d/c) ,  should be used to determine 
the coefficients in equation (109). The value of 
(d / c ) ,  is the value of d/c  on the ( Y = O  line in figure 2 
corresponding to the value of m=m,, where 

The value of the C coefficients are then determined 
for (cZ/C)~ and AO=a-a2. 

A sample calculation of the drag coefficient is 
given in the appendix. Experience has shown 
that the value of E ,  arid thus the drag coefficient, 
is not greatly affected by the depth of submersion. 
In  fwt, a rough approximation to E may be ob- 
tained by assuming Co=a-a,, and C,=A, in 
cquiition (109). 

Center of pressure: The linearized expression 
for the center of pressure of a finite-aspect-ratio, 
supercnvitating hydrofoil operating a t  zero cavi- 
tation number and finite depth of subniersion is 
from reference 1 

5c0+ 7 cl- 7 czs 3c3- -2- C4 

(111) 

whcre thc (7 coefficients are determined a t  the 

-k-- 1 
(7 > 

x c P J - ( ,  - 
eo+ P1 --? L , I  16 
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effective depth of submersion given by equation 
(110) and for Ao=a-al.  Superimposed on this 
flow is the crossflow component of lift which is 
assumed to be distributed uniformly over the 
chord and acting in a direction normal to  the 
chord line. Thus, the distance from the leading 
edge to the center of pressure of the crossflow- 
lift component xCp., is given by 

This assumption, of course, is crude and accurate 
only for a flat plate. For cambered surfaces the 
crossflow will not be uniformly distributed and 
for low-drag cambered sections such as the five- 
term section the crossflow is probably concen- 
trated on the rearward portion of the hydrofoil. 

The center of pressure of the combined flows 
may be obtained by adding the moments contrib- 
uted by the two components given by equations 
(111) and (112) and dividing by the total lift 
as 

As in the case of e, a few calculations reveal that 
a fair approximation for x , ~ , ~  is obtained by using 
Cb=a-ar and C,=A, in equation (111). A sam- 
ple calculation of the center-of-pressure location 
is given in the appendix. 

Design charts and tables.-With equation (99) 
the lift coefficient has been computed for the four 
sections of interest a t  depth-chord ratios of 0.25, 
0.50, 1.00, 2.00, and 5.00 for aspect ratios of 1, 3, 
and 5. These results are presented in figures 17, 
18, 19, and 20 for the circular arc, Tulin-Burkart, 
three-term, and five-term sections, respectively. 
Flat-section data are included as the CL,,=O case. 
Similar drag-coefficient data computed by using 
equations (100) and (109) are presented in figures 
21 to 24. These lift- and drag-coefficient data 
are also presented in tabular form in tables I to 
V along with the calculated location of the center 
of pressure and other results which are considered 
to be useful. 

d (a) -=0.25. 

FIGURE 17.-Lift coefficient for circular-arc section including the minimum angle of attack for maximum LID for 
t /c=0.03 at  x/c=0.2.  

5 8 6 8 1 1 8 4 1 4  
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Design l i f t  coefficient, cL,d 

d (b) -=0.50. 
C 

FIGURE 17.-Continued. 

Design l i f t  coefficient, CL,d 

d 
( c )  -=1.0. 

FIGURE 17.-Co11ti11ucd. 
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Design l i f t  coefficient. C L , ~  

d (d)  -=2.0. 
C 

FIGURE 17.-Continued. 

.I .2 .3 .4 0 _I  .2 .3 .4 
Design l i f t  coefficient, C L , ~  

d 
(e) -=5.0. 

FIGURE 17.-Concluded. 

C 
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Dtsign lift coefficient, CL.d 

d (a) -=0 .25 .  

FIGURE 18.-Calcul:itcd lift coefficient for Tulin-Burkart section including the minimum angle of attack for maximum 
LID for t / c = 0 . 0 3  at x / c = 0 . 2 .  

3 4 0 .I .2 .3 .4 0 .I .2 .3 4 0 .I 2 
Design lift coefficient, C L , ~  

d ( b )  -=0.50. 

FIGURE 18.--Continued. 
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Design lift coefficient, CL,+ 

d 
(c )  -=1.0. 

C 

FIGURE 18.-Continued. 

Design lift coefficient, cL,+ 

d (d) -=2.0. 

FIGURE 18.-Continued. 

C 
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Aspecl ratio I w 

Design l i f t  coefficient, C L , ~  

d (e)  -=5.0. 

FIGURE 18.-Concluded. 
C 

d 
(a) -=0.25. c 

FIGURE 19.-Calculated lift coefficient for a three-term section including the minimum angle of attack for maximum 
L / D  for l/c=0.03 at z/c=0.2. 
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d (b) -=0.50. 
C 

FIGURE 19.-Continued. 

.7 1 1 1  I 1  i l l  
Aspect ratio I Aspect ratio 3 Aspect ratio 5 

0 . I  .2 .3 .4 0 .I .e .3 .4 0 .I .2 .3 .4 
Design l i f t  coefficient, C L , ~  

d 
(c) -=1.0. 

FIQURE 19.-Continued. 

C 
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Design lift coefficient, CL,d 

d (d)  -=2.0. 

FIGURE 19.-Continued. 
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d (a)  -=0.25. 

FIGURE 20.-Calculated lift coefficient for a five-term section including the minimum angle of attack for maximum LID 
for t/c=0.03 at x/c=0.2. 

d (b) -=0.50. 

FIGURE 20.-Continued. 
586118-61-5 
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Design l i f t  coefficient, CL,d 

d ( d )  -=2.0. 

F I ~ U R E  20.-Continued. 
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Design l i f t  coefficient, C L , ~  

d (e) -=5.0. 

FIGURE 20.-Concluded. 

Design lift coefficient, cL,d 

d (a) -=0.25, 

FIGURE 2l.-Calculated drag coefficient for circular-arc section including the minimum angle of attack for maximum 
LID for tlc=0.03 a t  x/c=O.2. 
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Design lift coefficient, C L , ~  

(1 
(c) ; = 1.0. 

FIQURE Pl.-Continued. 
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Design l i f t  coefficient, C,, d 

d (d) -=2.0. 

FIGURE 21.-Continued. 
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C 
Design l i f t  coefficient, CL,d 

d (e) - =5.0. 

FIQURE 21.-Concluded. 
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FIGURE 22.-Calculated drag coefficicnt for Tulin-Burkurt section including the minimum angle of attack for maximum 
LID for t /c=0.03 at x/e=0.2. 

0 1 .2 . 3  .4 

d (b) -=0.50. 

FIGURE 22.-Continued. 
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Aspect ratio I 

CD foramjn - -- 

Design lift coefficient, CL, 

d (c) -=1.0. 

FIGURE 22.-Continued. 

Design l i f t  coefficient, CL, 

d (d) -=2.0. 

FIGURE 22.-Continued. 
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FIGURE 22.-Concluded. 

Frar 

0 .I .2 3 .4 0 .I 2 3 4 0  I .2 .3 4 
Design lift coefficient, CL,d 

d 
(a) -=0.25 

I H E  23.-Calculated drag coefficimt for thrce-tmn section including the minimum angle of attack for maximum LID 
for l /c=0.03 at x/c=0.2. 



INVESTIGATION O F  SUPERCAVITATING HYDROFOILS OPERATING NEAR FREE WATER SURFACE 39 

I 

Design lift coefficient, C, ,d 

d (b) -=0.50. 

FIGURE 23.-Continued. 

.- 

Design lift coefficient. C L , ~  

d 
(c) -=1.0. 

FIGURE 23.-Continued. 
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Design l i f t coefficient, C L , ~  

d (d) -=2.0. 

FIGURE 23.-Continued. 

.I .2 3 .4 0 .I .2 .3 .4 0 .I .2 .3 .4 
Design l i f t coefficient, CL,d 

d 
( e )  - =5.0. 

FIMJRE 2:3.-Concludcd. 
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I --- - 1 7 - - - 7  ’ .28 ~- 

Aspect ratio I Aspect ratio 3 
I 

CD 

Design lift coefficient. cL,d 

d (a) -=0.25. 

FIGURE 24.-Calculated drag coefficient for five-term section including the minimum angle of attack for maximum LID 
for t /c=0.03 at x/c=0.2. 

.- 1 

(b) Aspect ratio 5 
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FIGURE 24.-Continued. 

0 .I 
Design llft coefficnnt, CL, d 

d (d) -=2.0. 
C 

FIGURE 24.-Continiicd. 
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d (e )  - =5.0. 
C 

FIGURE 24.-Concluded. 

LOCATION OF UPPER CAVITY STREAMLINE 

The desirability of operating as near the design 
lift coefficient as possible is obvious from figure 5. 
Therefore, information on the minimum angle at 
which a hydrofoil with a finite thickness can 
operate with a cavity from the leading edge is 
needed. This angle can be determined by cal- 
culating the location of the upper cavity stream- 
line. The minimum angle a t  which this upper 
cavity streamline clears the upper surface of a 
hydrofoil of finite thickness is the angle desired. 
An approximate solution for the location of the 
cavity streamline is derived in the following 
analysis. 

TWO-DIMENSIONAL-THEORY ARBITRARY DEPTH 

Green's exact solution for flat plate.-The 
equation of the upper cavity streamline for a 
two-dimensional flat plate may be obtained from 
the solution of Green (ref. 2) as 

t-b 
b-1 -(l-b cos a) log, 

bt-1+ y'b2-1 y't2-l 
t-b 

--Jb2--1 log, '- -1 (115) 

where x is distance from the leading edge along the 
plate, 1 is the perpendicular distance from the 
lower surface of the plate to the cavity streamline, 
6 is the spray thickness, and t is an arbitrary 
parameter. For a selected value of 6/c, b is known 
from equation (ab). Thus, I/c for a given x/c 
may be obtained by assigning appropriate values 
to t and using the equations 

___ I l a /  - 
e-6 e 

and equation (115). The cavity streamline com- 
puted in this manner for several angles of attack 
and spray thickness to chord ratios are presented 
in figure 25. The. subscript A, on ( I / C ) ~ ,  is to 
indicate cavity ordinate due to angle of attack. 
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FIGURE 25.-Grccn's solution for the cavity upper 
streamline of a flat plate. 

x / c  

6 (b) -=0.50. 

FIGURE 25.-Continued. 

It ct~n be seen in figure 25 that for finite depths the 
cavity streamline rapidly approtdlcs a strnight 
line. The angle between this asymptotic line m d  
the ph te  is denoted as 4+a ttnti is given in 

.e 

.? 

.6 

.5 

.4 

.3 

.2 

.I 

0 .2 .4 .6 1.0 
x /  c 

6 
(c) -=1.0. 

FIGURE 25.-Continued. 
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6 

FIGURE 25.-Continued. 

(d) -=2.0. 

reference 2 as 

The magnitude of 4+a is shown for each stream- 
line in figure 25 and in figure 26 4 is plotted against 
S/c for various angles of attack. In  figure 25 
i t  may be seen that the cavity ordinate varies 
almost linearly with angle of lttttdc for angles 
less than about 8'. The value of ( Z / C ) ~ , / ~  or 
more generally (Z/C)~,/A, can be readily obtained 
and is given in figure 27. The value of ( Z / C ) ~ ~ / A ~  
for infinite depth is the same as the linearized 
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6 (e) -=5.0. 

FIGURE 25.-Concluded. 

result obtained in reference 1. Figure 27 shows 
that the cavity ordinates a t  a depth of about 0.5 
chord are nearly twice as great as those obtained 
a t  infinite depth. 

The linearized solution for cambered sections.- 
In order to determine the cavity ordinates for a 
cambered section, it is necessary to use the exact 
linearized solution previously discussed in the 
section entitled Forces and Moments.” The 
problem of obtaining the hydrofoil cavity ordinates 
is simple in principle. All that is required is to 
find the vertical-velocity perturbations Z(-T/Z) 
ahead of the equivalent airfoil shown in figure 7. 
The value of E is needed because from it the value 
of v on the hydrofoil-cavity streamline can be 
found. Since the linearized slope of the cavity 
streamline dyldx is v/V, the shape of the cavity is 
determined. 

The procedure for determining the vorticity 
distribution Q on the airfoil is exactly the same as 
the first three steps given in the procedure for 
determining the linearized solution for the forces and 
moments. The value of ;(?E’> can be determined 
by integrating the increments of 7 induced at a 
point - Z/C due to the distributed vorticity f? given 
by equations (10) and (11). Obvioudy, this inte- 
gration becomes very complicated, particularly 
if there are many terms in C A ,  sin ne. The 

L i  

I l l l l l l l l l l  ~ i i i i i i i i i i i i  1 I I ;  H I  
0 . I  .2 .3 .4 .5 6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 

Ratio of spray thickness to chord, 6/c 

FIGURE 26.-Green’s solution for the effect of spray thickness on the spray angle of a two-dimensional flat plate. 
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x / c  

FIGURE 27.-The linearized solution for cavity ordinates 
due to angle of attack. 

problem can be simplified, however, by dividing 
the velocity U into two parts VAo and V,, where 
vAn is the component contributed by the first 

term A. cot-, and Uc, the component contributed 

by the camber terms E A ,  sin ne. Thus the final 
nondimensional cavity ordinates l / c  will be broken 
down into two components ( l / c ) A o  and ([/c), such 
that 

- 
e 
2 

(z/c) LoiaZ= (Z/C)Ao+ (z/c)c (1 18) 

The distance 1 is measured from the reference line 
of the section along a line normal to the reference 
line. There are two advantages to dividing the 
vorticity into its angle of attack and camber com- 
ponents. First, the value of ( l / c ) A o  is known from 
Green’s solution and has been given in figure 2 5 .  
The linearized version is shown in figure 27. 
Thus, half the work is completed if An is known or 
can be determined. 

I t  is now important to review the meaning of 
the coefficient Ao. The angle of attack is mcas- 
u r d  from the orientation which makes Ao=O 
wlrcn the depth is infinite. At this orientation 
and infinite depth 

Ao’=--, E de=o ‘s (iG 
and for aiiglcs of attnck meiLsrircd from this 
refererice Orientation A,,= a. Howcvw, if tlie 
angle of attack is measured from this reference line 
at  finite depths, i t  is found that the vduc of A,’ #O. 

This result means that at finite depths there is an 
induced angle of attack A,’ due to the camber. 
The magnitude of Ao’ is directly proportional to the 
slope of the hydrofoil and thus to CL,a. The 

calculated value of - is given in figure 28 for the 

four sections of interest for a range of depth-chord 
ratios. I n  order to obtain the value of (Z/c)AO, one 
obtains Ao’ from figure 28 and A, is obtained by 
adding a ;  that is, Ao=a+A0’. The value of 
( Z / C ) ~ ,  is then obtained from figure 25 or 27. 

The second advantage obtained by dividing the 
vorticity distribution into the A, and camber con- 
tributions is that the EA, sin ne contribution 
usually has only small strength near the leading 
edge and, as an approximation, can be concentrated 
at  one point. In  fact, for low drag sections, it is 
desirable to distribute the vorticity as near the 
trailing edge as possible. Thus the velocity in- 
duced a t  points ahead of the airfoil due to the 
EA, ,  sin ne or camber contribution may be ap- 
proximated by concentrating the entire camber 
vorticity a t  the center of pressure a as shown in 
figure 29. Figure 29 also illustrates the system 
used for computing the induced velocities forward 
of the airfoil. The value of the distance to the 
center of pressure in chords is given by C‘,/C& or 

A,’ 
CL. d 

- -  

The strength of the sirigular vortex can be obtained 

d/C 

FIGURE 28.-The influence of depth of submersion on the 
angle of attack induced by camber. 
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€ 

Airfoil plane, C 

FIGURE 29.-Linearized model for calculating cavity upper 
streamline at arbitrary depth. 

from the equation for lift due to camber as 

prcv=cLcP v ~ = ~ A ~ z  e v2 2 2 
Therefore, 

(121) 

The velocity induced at  a point on the x-axis 

A1 7ZV- 2 

A* rC=zv- 2 

due to rc is therefore 
A1 V- 

(122) rc - - 
27r (u-&.)- 27r(ul-;a)=2 (e;) 

V= 

The velocity 'ii in front of the airfoil a t  a point 
-Z/c is exactly the same as v on the cavity stream- 
line if the relationship between -Z/Z and x/c given 
in figure 8 is maintained. Thus v/V and therefore 
the slope of the cavity streamline due to camber 
(dyjdx) (x /c)  is known. Integrating dy ldx  from 
the leading edge to a point x/c gives 

Therefore, since * 
equations (122) and (123) gives 

=-) and v=Z, combining d z ( c )  

where Z/E takes on negative values and the relation- 
ship between -Z/Z and x/c is found in figure 8. 

Since CL,d is a €unction of AI,  - zt can be deter- 

mined from equation (123). The magnitude of 

@!& as a function of the depth-chord ratio is pre- 

sented in figure 30 for the four sections of interest. 
Thus the total ordinates of the upper cavity 
streamline are obtained for t,he two-dimensional 
hydrofoil operating a t  zero cavitation number and 
arbitrary depth by using figures 25, 28, and 30 
and equation (118). 

The adequacy of the assumption of concentrated 
camber vorticity is shown in figure 30(b) by com- 
paring the solid curve for S/c= ~0 with the dashed 
curve. The solid curve was computed from equa- 
tion (124) and the dashed curve was obtained 
from t,he coordinates given in reference 16. The 

Chi 

Y (a) Circular-arc hydrofoil. ao=g 

FIGURE 30.-The influence of depth of submersion on the 
cavity ordinates due to camber. 

.24 

.20 

.I 6 

.I 2 

.O 8 

.O 4 

0 .2 .4 .6 .8 1.0 
x/c 

(b) Tulin-Burkart hydrofoil. 

FIGURE 30.-Continued. 
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X / C  

(c) Three-term hydrofoil. 

FIGURE 30.-Continued. 

8 
I T I I C  

- 

( d )  

0 .2 .4 .6 .e 1.0 
x/c 

(d) Five-term hydrofoil. 

FIGURE 30.-Concluded. 

tabulated coordinates of reference 16 were com- 
puted for the Tulin-Burkart section by considering 
the vorticity to be distributed as given by ZA, sin 
ne and performing the necessary complicated inte- 
gra tion. 

In  figure 3 1 the theoretical two-dimensional 
cavity shape for the low-drag hydrofoils operating 
a t  infinite depth is shown for the particular value 
of CLSa=0.2. Also shown in figure 31 is the lower 
surface of each design for the value of CL,d=0.2. 
An interesting point (first noted in ref. 16) is re- 
vealed in figure 31. The calculated cavity shape 
at  the design angle of attack falls beneath the 
lower surface of the configuration. This result was 
not expected for these low-drag hydrofoils because 
the camber was selected to have positive pressure 
everywhere on the lower surface. It is believed 
that the disagreement is due to the inability of the 
linear theory to predict accurately the pressure 
distribution when the airfoil vorticity is not in 
reality distributed along the x-axis. However, 
the shape of the cavity as determined from the 

a,'deg Hydrofoil lower surfoce ! ! 1 ! I 

.2 

.I 

0 

-.I 
.3 

.2 

.I 

0 

-_I  
.3 

.2 

.I 

0 
.3  

.2 

. .I 

Y/C 

0 .I .2 .3 .4 .5 .6 7 .8 .9 1.0 
x/c 

(a) Circular-arc section. 
(b) Tulin-Burkart section. 

(c) Three-term section. 
(d) Five-term section. 

FIQCRE 31.-Location of cavity upper surface for low 
d 

drag supercavitating hydrofoils. C L  d = 0 . 2 ;  -= a. 

linear theory is much less sensitive to t,he deviation 
of the true location of the vorticity from the 1- 
axis. That is, the distance from a point on t,he 
hydrofoil to a point on the negative x-axis is ap- 
proximated very well by only the 5-component of 
the distance. Thus, i t  is seen that the pressure 
distribution predicted by the linear theory will be 
more nearly correct when the hydrofoil is a t  an 
angle of attack and more symmetrically located 
about the x-axis. It appears, then, that low-drag 
hydrofoils such as those derived in the present 
paper and reference 1 can never be operated a t  the 
design angle of attack for two reasons: (1) An 
upper surface cavity will not form even on an 
infinitely thin configuration and (2) some thick- 
ness must be provided for strength. 
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CORRECTION FOR FINITE ASPECT RATIO 

Equations (122) and (123) show that the cavity 
ordinates are directly proportional to the circula- 
tion on the equivalent airfoil and thus the circula- 
tion of the hydrofoil. Therefore, if the hydrofoil 
circulation is reduced from its two-dimensional 
value by finite span, the cavity ordinates must 
also reduce. Another argument for this decrease 
in cavity ordinates is that, if the two-dimensional 
drag coefficient is reduced because of finite aspect 
ratio, the maximum cavity thickness must also 
decrease as pointed out in reference 17. It is now 
assumed that for finite aspect ratios the cavity 
ordinates will be reduced from the two-dimen- 
sional value in proportion to the reduction in CL,]. 
This reduction occurs for two reasons, first because 
of the reduced angle at and because of the reduced 

lift-curve slope, A+1 - m. More specifically, if the 

cosine terms are assumed to be about equal to 
unity, the first term of equation (99) can be written 
as 

A 

where the subscripts on m indicate the angle at 
which m is determined on figure 2. If ac is 
broken into two components A,' and a,', that is, 
a,=Ao'+cul, equation (125) can be written as 

A 
m~+-c-a,ac' (126) 

If a+Ao'=Ao the value of the cavity ordinates 
at infinite aspect ratio and angle a+&'-ai is 

where ("> is determined from the nonlinear 

solution of Green and ( Z / C ) ~  from the linearized 
theory. Therefore, the effective lift-curve slope 
at infinite aspect ratio and angle &-ai is mAo-a'r 

for the first term in equation (127) and maPo for 
the second term. Thus a t  finite aspect ratio the 

C A0-q  

corrected cavity ordinates are 

A 

or 

where 

A ma + ac - a Rc=- A S 1  ma=, 

The preceding analysis assumes that the induced 
angle at is constant over the span. Since ai 
actually varies over the span, except for the case 
of elliptic loading, the cavity ordinates will also 
vary over the span. This effect, can be included 
by using the appropriate spanwise distribution of 
at determined from finite-span airfoil theory. 
(See ref. 11.) Also the influence of the crossflow 
component of flow on the cavity ordinates has 
been assumed to be negligible. However, near the 
tips the cavity shape is largely determined by 
the crossflow. For example, a t  zero aspect ratio 
the cavity is entirely determined by crossflow. 
Thus, it seems that the true cavity shape is 
determined a t  the tips by the crossflow and a t  the 
center by the main flow; the cavity shape between 
is some transition between the two extremes. 

EXPERIMENTAL INVESTIGATION 
MODELS 

Concurrent with the preceding theoretical in- 
vestigation an experimental investigation was 
conducted. Two models of 7.071-inch chord were 
used in this experimental investigation. As shown 
in figure 32(a), the fist had a lower surface con- 
forming to the Tulin-Burkart low-drag con- 
figuration given by equation (14). A two- 
dimensional design lift coefficient of 0.392 
corresponding to a value of 0.2 for the coefficient 
A, was selected. Since the foil is designed to 
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0 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 2.250 2.500 2.750 3.000 3.250 3.500 
0 .092 .155 .207 .253 .292 .327 3 6 3  .396 ,426 .456 .483 .511 .536 .550 
0 .037 ,071 ,108 .144 .177 .207 .234 .257 .277 .293 3 0 5  312  .3 15 .314 

3.750 4.000 4.250 4.500 4.750 5.000 5.250 5.500 5.750 6.000 6.250 6.500 6.750 7.000 7.071 

308  .297 .282 .262 .23i .207 .1i2 .I32 .088 .038 -.018 -.078 -.144 -.215 -.236 

- 

.536 .502 .467 .430 .390 .349 302 ,254 .206 .150 .OS4 .010 - .079 - .189 - .236 

I 
I I 

(a) Cambered model; Tulin-Burkitrt; CL,d=0.392. 

FIGURE 32.-Modt~I coiifigiirations. 

operate in a cavity, the shape of the upper surface 
is arbitrary ilS long ns i t  does not interfere with 
the formation of the cavity from the leading edge. 
However, since the greatest advantage is to be 
obtained u t  smiill i l r~gl~s of attack and thus thin 
cavities, the thickness of the foil must be small. 
For the present cambered model the upper surfitce 
profile from tlie leading edge to midchord was 
arbitrarily chosen to conform with the tlieoreti- 
callj- tletcrmincd lrcc streamline for a two- 
dimensional flat p1:itc at 5' incidence. The 
tliickness of tlie portion aft of the midchord W:IS 

made the image of tlic forward portion so that :I 

symmetrical thickiiess distribution with i i  

minimum thiclincss-chord ratio of 3.3 percent is 
obtained. Siiicc tlic cciitcr of pressure of tlic 
Tulin-Burk:lrt liythol'oil is located near tlic 
midchord, this sj-mmetrictil section minimizes tlic 
torsional moment on tlw foil arid results in less 
twist tlian monltl bc experienced bj- i t  non- 
s~-mmetric:d section. 

Thc second moclcl \viis of t r i i~ngu l i~  cross section 
with n flat, bottom : is  shown in figure 32(b). 

Dressure 

<NACA 66-012 

7.071" 

1 I n p-# I 

L 

T 

(b) Flat-plate niod(~1. 

FIGURE :~2.-Co1iclud~~d. 
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The maximum thickness was 5 percent of the 
chord. 

Such thin sections lead to structural limitations 
on the aspect ratio when supported by a single 
strut a t  midspan. Since an aspect ratio of 1 is 
about the most desirable from the structural 
standpoint and also represents the accepted 
dividing line between hydrofoils and hydro-skis, 
both models were made with a square plan form. 

The strut, which can also be seen in figure 32 (b), 
had a NACA 661-012 airfoil section. The strut 
was niourited perpendicular to the bottom of the 
flat plate and perpendicular to the X-axis of the 
cambered surface. The intersection of the strut 
and upper surface was without fillets. Both the 
hydrofoils and the strut were made of stainless 
steel and were polished to a smooth finish. 

APPARATUS AND PROCEDURE 

Tests were made with the Langley tank no. 2 
carriage and existing strain-gage balances which 
independently measure the lift, drag, and pitching 
moment. Figure 33 shows a view of the test setup 
with the cambered hydrofoil and the balance 
attached to the carriage. The positive directions 
of forces, angles, and moments used in presenting 

FICCRE 33.-Test set-up showing can~l)c~rotl hydrofoil and 
balance attached to  towing c:irri:ige. Aspect ratio, 1.0. 

the force data are shown in figure 34. 
The force and moment measurements were 

made at constant speeds for fixed angles of attack 
and depths of submersion. The depth of submer- 
sion is defined as the distance from the undisturbed 
water surface to the leading edge of the model. 

Ventilated or zero-cavitation-number tests were 
made with both models a t  a depth of submersion 
of 0.5 inch over a range of angle of attack from 
6" to 20" for the flat plate and 8" to 20" for the 
cambered foil. Two methods of obtaining venti- 
lated flow a t  this 0.5-inch depth were used: normal 
Ventilation through the trailing vortices as 
described in reference 5 ,  and injection of air 
through the port near the strut leading edge. 
(See fig. 30.) This air was supplied a t  a rate of 
0.012 pound per second and was cut off after 
ventilation was established. Both models were 
also investigated a t  a depth of submersion of 0 
inches a t  a=4" for the flat plate, and a=6", 8", 
and 10" for the cambered surface. At angles of 
attack of 16" and 20" for the flat surface, forces 
were also measured over a range of depth of 
submersion for which ventilation could be obtained 
(d=O to 2 inches). 

The thickness and location of the jet or spray 
leaving the leading edge of the flat plate were also 
nieasured a t  16" and 20" for a range of d from 0 
t o  2 inches. A schematic drawing of the instru- 
ment used for measuring the spray thickness and 
direction is shown in figure 35. The stagnation 
tube was lowered through the spray during a test 
and the pressure and location ol the tube center 
line was recorded on an oscillograph. Almost 
instantaneous response of the stagnation-tube- 
pressure-cell combination was obtained b37 corn- 
plctely filling the tube and connecting line with 
wntcr. Tlir point of entering and leaving the 
spray w i i s  obttiined by coiiipnring the lociltiori of 
the tube with tlic risc and fn11 of pressure as the 
tube ptisscd through the spray. Tlie vertical 
locxtioti of the tuhc m:is obtained frolii the output 
of t l i c  slitlc-wire circuuit :ilso sliown it1 figure 3.5. 

L l f I  
I 

Moment i 

- t  
FIGCRE 34.--Systerri of axes. 
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Cable to carriage 

put to 
onometer 

output to 
galwnometer 

Pressure transducer--- 

Foil strut- S p r o # 9 z  
;Stagnation tube, 1/32" O.D. 

V 
( a )  

Gage strut---- ---Foil strut 

( b )  

(a) Side elevation. 
(b) Front elevation. 

FIQURE 35.-Schernatic drawing of spray thickncm gage. 

During a test thr tube wns pnsscd through the 
sprtiy several tinies and t ~ n  tiverage of tlic results 
was taken. 

Tests of the finite-cnvittttion-nuniber citse were 
made t i t  t i  depth of subniersion of 6 inches (where 
vortex ventilation did not occur). SletLsure- 
nients of lift, drug, tind moment were obttiined for 
a range of velocities from 20 to 80 feet per second 
at angles of 18' and 20' (for which long trailing 
air or vttpor cavities could be obtained). Data 
for air-filled cavities were obtairird by introducing 
air from tin externttl metered supply to the upper 
surf;ice through thr ports on the strut leading etlgr 
shown i n  figure 32. During thrsr tests t l i c  pres- 
siire in t hr ctLvity lornicd WHS nielisured by IL pres- 
sure cell coiinrctrd to tt ~:6-iticIi-cliliiiiet~r orificr 
lo(*tttrd I I C I L ~  tlie bottoiii of the strut so 11s to bc 
within t tic. ctivity. (See fig. 32.) This iiictuxirc(1 
prcssrirr wiis usrd in conipiiting the caiivittttion 
nuniber for tlic ravity foririeti. The airflow rcitr 
wtis iiir~isurcd by tin orific+typc flow nirtcr. Air- 

tciinctl with the trst ttrrtingoiiirnt. 
flow rILtPS up to 0.012 po"n'1 prr src~on(1 WPI'C O b -  

ACCURACY 
r 7  1 hr c~littngr i n  iiiiglr of ttf twk tlur to structunil 

deflection (wuscvl 1)y tho f o r c ~ s  on t I i r  i i i o t l r l  wtis 

obtained during the calibration of the balances 
and the test data were adjusted accordingly. The 
maximum correction necessary was only 0.1'. 
The estimated accuracy of the measurements is 
as follows: 

1 0 .  1 
1 0 .  1 
1 0 .  2 
1 15 
1 7  
1 6  

1 10 
*0. 05 

rt1.  5 

The forces and moments were converted to the 
usuitl aerodj-numic coefficient form by using a 
measured value of the water density of 1.93 slugs 
per cubic foot. The kinemtitic viscosity meas- 
ured during the tests was 1.70X10-5 pounds- 
second per square foot. Thus, for the range of 
velocities investigated, the Reynolds number 
based on chord ranged from O.7X1O6 to 2.8X106. 

EXPERlMENTAL RESULTS AND DISCUSSION 
ZERO CAVITATION NUMBER 

A typiciil photogruph of the flat t i r i d  cambered 
models operiiting in t i  ventilated condition near 
the free surfwe is shown in figure 36. Since only 
the zero ciivitiition number or fully ventilated flow 
condition wtis of interest, data are presented 
only for those conditions where ventilated flow 
could be obtained. 

Basic force and moment results.-The basic 
data from the tests of the hydrofoils operating in a 
ventilated condition a t  a depth of submersion of 
0.5 inch tire presented in figures 37 tind 38 as 
curves of lift, drug, tirid riioriicnt about the lritding 
edge tigninst speed for vctrious tingles of iittiick. 
Ventihted-flow dtitti obtaincd a t  zero depth of 
subiiiersion t i t  4' iwidence Tor the fliit pliitc nnd 
6', go, and 10' for the cnnibered surfwe tire dso  
included. 

The biisir vrntihitrd-flow diitti obttiined for the 
fltit pltite tit depths of 0, 1.0, 1.5, und 2.0 inchrs for 
incidences of 16' iintl 20' Itre presented in figure 
39. 

Spray thickness and spray angle.-In thc scc- 
tion on thclory the need for cleterniining thc re- 
ltitionship 1)ctween the leading-edge drpth of sub- 
incrsion itnd the sprciy tliickncss for it flat plate 
wits pointrd out. T1v.w viiriribles were iiiettsurcd 
for thc fliit plitte a t  16' and 20' ovcr the rttngt' of 
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(a) Lift. 

FIGURE 37.-Charactcristics of the flat lifting surface 
opcrating in a ventilated condition. 

greater th in  the leading-edge depth of submersion, 
and the magnitude of the ratio increases with 
either increase in angle of attack or decrease in 
depth of submersion. Also shown in figure 40 are 
tbe theoretical relationships between S/c and d / c  
for the two-dimensional 0' and 90' cases previous- 
ly discussed. It niay be noted thtit the trends of 
the experimental and theoretictil curves are parallel. 

In  foregoing scctions i t  has been pointed out 
that the relationship between leading-edge depth 
of submersion and spray thickness is influenced 
by the force of gravity and thus ctinnot be obtained 
from Green's antilysis. Also thc influence of aspect 
ratio has bccn shown to be importtint. The 
relationship for a=0' t ~ n d  90' litis been dcter- 
mined but tlic nianncr in which interinedititc 
angles of attiick affect tlw result is not iiiidrrstood. 
Tlic cliitti shown in figurc 40 c~oirihincd with the 
end-point rcsrilts prrviously c~sttL1)lishctl for a = O o  
and 90' permit lirics of constnnt d / c ,  rtt lcast for 
the tispcct-ratio-1 condition, to be drtiwn on figure 
2. The cspcrinicntnl diitii shown in figure 40 were 
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(b) Drag. 

FIGURE :37.-Continucd. 
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(c) Pitching moment about lruding edge. 
FIGURE 37.-Conclnded. 

plotted on figure 2 a t  tlicir cqiiivtLleiit tingle of 
attack a-ai .  This corrcsponds to cquivalcnt 
angles of attnclr of approxiniiitcly 12.3' for the 
16' case and 15.9' for the 20' ciise for the riingc of 
dlc presented. For values of d /c  greater than 
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I I 
d, in. a, deg 

Speed, f p s  

(c) Pitching moment about leading edge. 

FIGURE 38.-Concluded. 

a: deg 
I 

Speed, fps 

(a) Lift. 

FIGURE 3S.-Characteristics of the cambered lifting surface 
operating in a ventilated-flow condition. 

Speed, fps 

(b) Drag. 

FIGURE 38.-Continued. 

0.285, only the theoretical end points were avail- 
able and parallel lines were faired in. Although 
these lines are accurate only for the aspect-ratio-1 
condition, they are considered to be good approxi- 
mations even for aspect ratios as high as 6. Such 
an approximation is reasonable because the asymp- 
totic value of the stagnation line infinitely forward 

(a) Lift. 

FIGURE 39.-Characteristics of the flat plate operating in 
a ventilated-flow condition a t  a=16" and 20" for depths 

of submersion of 0, 1.0, 1.5, and 2.0 inches. 

of a flat plate is only of the order of about 0.1 
chord below the stagnation point for aspect ratios 
less than 6 and lift coefficients less than 0.5. It 
is obvious from figure 2 that for depths greater 
than 1 chord, the end points may be connected 
by any reasonable line (for example, a straight 
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Speed, fps  

(b) Drag. 

FIGURE 39.-Continued. 

(c) Pitching moment about leading edgc. 

FIGURE 39.-Concluded. 

line) with vrry little loss in ttccurtwy. 
Figurr 41 shows the effect of depth of subincr- 

sion on the sprtiy tingle 4 for thcl fltit pltitc tit 16' 
and 20'. 

FINITE CAVITATION NUMBER 

Tlic finite-cuvittitioii-11~1ibc.r diiiractcristics of 

1.2 

I .o 

.8 

6/C .6 

.4 

2 

0 05 10 15 20 25 .30 35 
d/c 

FIGURE 40.-Effect of depth of submersion on the flat 
lifting surface spray thickness. Aspect ratio, 1.0. 

d/c  

FIGURE 41.-Effect of depth of submersion on the flat 
lifting surface spray angle. Aspect ratio, 1.0. 

the two models obtained at  a 6-inch depth of sub- 
mersion are shown in figure 42 for angles of atttick 
of 18' and 20'. The solid data points tire the lift 
coefficients obtained for vapor cavitation. The 
cavitation number corresponding to the condition 
tested was coniputed by using the wtiter vapor 
pressure (at the test temperature) for the pressure 

within the cavity that is a=- For cttvi- 

tntion numbers less thttn about 0.7, thc vtipor 
pressure was actually slightly lower thtin the inetis- 
ured cavity pressure. At cttvittttion nunibcrs 
grctiter than 0.7, the nietisured pressure was usutilly 
coiisiderably higher than the vtipor pressurc?. 
However, since at the high ctivittttion nunibers it 
could not be deteriiiined with certtiinty whether 
the ctivity pressure orifice wtis within the ctivity, 

( -"> 2 
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(a) a=18'. 
(b) (~'20'. 

FIGURE 42.-Effect of cavitation number on lift 
coefficients of flat and cambered lifting surfaces. 
Depth of submersion, 6 inches; aspect ratio, 1.0. 

Symbols for flat-plate data are flagged. 

the vapor pressure was used to compute all cavi- 
tation numbers. These high-cavitation-number 
points are denoted by the solid symbols. Also 
denoted in figure 42 are the approximate values 
of u a t  inception ct and the point a t  which the 
cavity length exceeded the chord (supercavitation). 
These values are only estimates, since no effort 
was made to find the exact velocity a t  which these 
incidents occurred. Although the estimated values 
of uf are the same for both models, there may actu- 
ally be some difference in the true points. 

The open data points in figure 42 represent data 
obtained by introducing air to the upper surface 
of the model and establishing a cavity. The cavi- 
tation number for this condition was computed by 
using the measured value of the pressure within 
the cavity. I n  this case the cavity pressure orifice 
was always well within the cavity formed. In  
figure 42 the curves are extended to the com- 
puted value of C, for a=O as obtained from 
equation (99). 

The agreement between the vapor- and air- 
cavity data confirms the use of the cavitation 

number as the significant parameter for correlating 
the characteristics of cavity flow. The similarity 
of the air and vapor cavities at nearly equal 
cavitation number is shown in figure 43. This 
dependence on the cavitation number is to be 

(a) Flat lifting surface. 

FIGURE 43.-Comparison of air- and vapor-filled cavities 
for depth of submersion of 6 inches. a=20°. 

(b) Tulin-Burkart lifting surface; CL, d=0.392. 

FIGURE 43.-Concluded. 
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expected because the forces on the body are influ- 
enced only by the streamline curvatures and thus 
the pressure within the cavity; the type of gas 
present should have only a secondary influence. 

Satisfactory air cavities could not be established 
at angles less than about 18". At low model 
speeds where the air could reach the separated 
region near the leading edge the cavity upper 
surface was greatly disturbed by the force of the 
air jets. At higher model velocities either the air 
could not reach far enough upstrearii to form a 
cavity or when a cavity was formed it did not 
cover the whole span. If a greater quantity of 
air is supplied it is believed that satisfactory 
results can be obtained at angles less than 18". 

The use of a dynamic model of a high-speed 
aircraft equipped with supercavitating hydrofoils 
will require simultaneous reproduction of both the 
full-scale cavitation and Froude numbers. Such 
an investigation is possible if an air-filled cavity 
with the proper cavitation number can be estab- 
lished on the model. 

COMPARISON BETWEEN THEORY AND 
EXPERIMENT 

FORCES AND MOMENTS 

LIFT COEFFICIENT 

The experimentnl dntti presented in tlic previous 
section revealed that all ventilated force and 
moment datu in coefficient form were independent 
of speed in the range tested. (This indcpcndencc 
wits true in the present case bccause of the shallow 
depth of submersion and therefore u = O .  At very 
large depths, u will be greater than zero because 
p ,  is grenter than p ,  even if the cavity is fully 
vcnted to the atmosphere. Therefore, a t  largc 
depths, changes in velocity will affect the lift 
cocfficient bccause these clinngcs affect u. )  Tlic 
C l t ~ t t i  shown in figures 37(2~) ant1 38(a)  tirr plotted 
in figurc 44 tis lift coefficient agninst angle of 
attiiclr for ct~ch of the models tested. A c*omptiri- 
son of thc lift coefficicnts of tlic two niodcls shows 
an effectivc incrcasc in anglc of attnclr of thc 
cmibered niodcl ILS prcdic*ted by the Tulin-RurBnrt 
tlicory. Also shown in figurc 44 iirc tlic tliclorcti- 
c d  lift-c*ocfficic.rit (wvcs obttiincd Troin cquntion 
(99). Tlic  theory is d)out 3 pcrccnt loww thnn 
tho nieitsiircd vdiws. 

The vtLritLLion of lilt cocfficicnt with clcpth of 
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FIGURE 44.-Comparison of theoretical and experimental 
lift coefficients for the aspect-ratio-1 flat and 

Tulin-Burkart sections. u = 0. 

submersion of the flat-plate model a t  16' and 20' 
incidence is shown in figure 45. Note the slight 
increase in lift coefficient as the hydrofoil nears 
the surface. Also shown in figure 45 is the theo- 
retical vitriution of the lift with dcpth of sub- 
mersion obtained from equation (99). The theory 
is in excellent ngrecment with the datti and ttccu- 
rately predicts thc incretw in lift with a decrease 
in depth of subniersion. 

In  reference 18 data obtiiined 011 the same two 
models used in the prcscnt expcrinientnl investi- 
gation we presented. These data were obtained 
with the model in a ventiliited condition a t  speeds 
up to 185 fps. The measured lift coefficient is 
plotted against the depth-chord ratio for various 

d/c 

FIGURE 45.-Comparison of theoretical and experimental 
lift coefficients for the aspect-ratio-1 fiat lifting surface 

a-0. 
:is affected by depth of submersion. a= 16" and 20'; 
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angles of attack for the flat plate and Tulin- 
Burkart sections in figure 46. The solid lines in 
figure 46 are the theoretical values of the lift 
coefficient obtained irom equation (99). Those 
points in the range ~ ~ 0 . 0 3  denoted as partially 
vented are for cavitation numbers slightly greater 
than 0. The agreement between theory and 
experiment is generally good. 

Two five-term supercavitating sections, one of 
aspect ratio 1 and one of aspect ratio 3, have also 
been tested in the ventilated condition near the 
free water surface in Langley tank no. 2. The 
aspect-ratio-1 hydrofoil had a design lift coefficient 
c & , d  of 0.392. The value of cL.6 for the aspect- 
ratio-3 hydrofoil was 0.196. The data obtained 
on these hydrofoils are presented in reference 19. 
In figure 47 the measured lift coefficients taken 

.- 
0 16 
v 20 

partially l -  Theory vented 

d / c  

(a) Tulin-Burkart; CL, d=0.392. 
(b) Flat. 

FIGURE 46.-Comparison of theoretical lift coefficients 
with experimental data reported in reference 19 on 
aspect-ratio-1 flat and Tulin-Eurkart sections. u 0. 

from reference 19 are plotted against the depth- 
chord ratio for various angles of attack €or the 
two five-term sections investigated. The solid 
lines in figure 47 are the theoretical values of the 
lift coefficient given by equation (99). The agree- 
ment between theory and experiment is again 
excellent except €or the very shallow depths where 
the assumptions made in the derivation of the 
theory are invalid. 

DRAG COEFFICIENT 

In  figure 48 the data of figures 37(b) and 38(b) 

16 0 
18 0 

.4 

CL 
.3  

.2 

.I 

0 .I .2 .3 .4 .5 .6 .7 .e .9 
d / c  

(a) Aspect-ratio-1 five-term hydrofoil; CL, d=0.392. 

FIGURE 47.-Comparison of theoretical lift coefficients 
with experimental data reported in reference 19 on aspect- 

ratio-1 and -3 five-term sections. u = 0. 

CL 
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(b) Aspect-ratio-3 five-term hydrofoil; C L ,  d=0.196. 

FIGURE 47.-Concluded. 
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0 2 4 6 8 IO  12 14 16 I8 20 
a.deg 

FIGURE 48.-Comparison of theoretical drag coefficients 
with experimental data obtained on aspect-ratio-1 

flat and Tulin-Burkart sections. u -0. 

in coefficient form are compared with theoretical 
values obtained from equation (100). The friction 
drag coefficient of one side of either of the models 
was calculated to be about 0.003. With the strut 
drag included, the total friction drag coefficient 
C', based on the hydrofoil area was taken as 0.004. 
When this value of C, is used in equation (loo), 
the agreement between theory and experiment is 
good for both models. 

In  figure 49 the experimental lift-drag ratios 
obtained from the data of figures 37 and 38 are 
compared with theory. Again both experiment 
and theory include the skin-friction drag co- 
efficient (C,=0.004). The agreement between 
theory and experiment is good for both models. 
The superiority of the cambered hydrofoil is 
clearly revealed in this figure. At a lift coefficient 
of 0.25 the LID of the cambered foil is more than 
twice that of the flat plate. 

Also included in figure 49 are data taken from 
reference 5 on a ventilated modified fltit plate of 
aspect ratio 1. This modified plate had an ellip- 
tictil leading edge and a tapered trailing edge. 
The importance of providing a sharp letiding edge 
on hydrofoils designed for use in ctivity flow is 
shown by comptiring the LID of this modified flat 
pltite with the LID of the sharp-hiding-edge flat 
plate of the present investigtition. The rounded 
leading edge of the modifled pltite is subjected to 
a net positive pressure which is not balanced by 
similtw pressures on the afterportion of the plate. 
In tiddition, the lower surfwe of this pltitc presents 
an effective ncgiitivc ctiinbcr to tlie flow rind thus 
does not, develop tis much lift as a truly fltit surftice. 
At smtill t~ngles the lortii drug of the rounded 
leading edge is of the siitnc order of mcbgnitude as 
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FIGURE 49.-Comparison of theoretical lift-drag ratios 
with experimental data obtained on the aspect-ratio-1 
sharp-leading-edge flat surface and the Tulin-Burkart 

skin friction, (C,=0.004). u=O. 
cambered section. Experiment and theory include 

the induced drag and skin friction; thus, i t  greatly 
influences the maximum lift-drag ratio of the 
section. Several other recent investigtitions have 
noted the importance of a sharp leading edge on 
hydrofoils designed for operation in the super- 
cavitating regime. 

The experimental values of the drag coefficient 
obtained in reference 18 on the aspect-ratio-1 f l t t t  
and Tulin-Burkart models are presented for com- 
parison with theory in figures 50(a) and 50(b), 
respectively. The agreement between theory 
and experiment is very good over the range of 
depths and angles of attack tested. 

The  experimental drag-coefficient data pre- 
sented in reference 19 on the aspect-ratio-1 and 
-3, five term sections are compared with theory in 
figure 51. As shown in figure 51(b) the aspect- 
ra t io3 data are in excellent agreement with tho 

(See refs. 20 and 21.) 
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(a) Flat. 
(b) Tulin-Burkart; CL, d=O.392. 

FIGURE 50.-Comparison of theoretical drag coefficients 
with the experimental data reported in reference 18 on 
aspect-ratio-1 flat and Tulin-Burkart sections. u - 0. 

theoretical values obtained from equation (100). 
However, as may be seen in figure 51(a) the 
experimental drag coefficient for the highly 
cambered aspect-rat,io-l model (cL,d=o.392) are 
considerably higher than the calculated values. 
The reason for this disagreement is probably due 
to the inability of a theory, which assumes small 

14 o I: ;J 
20 0 

Theory 
.20 

.I 5 

c, IO 

.05 

0 I .2 .3 .4 .5 .6 .7 .8 .9 
d/c 

(b) Aspect-ratio-3 five-term hydrofoil; CL, d =  0.196, 

FIGURE 51.-Concluded. 

camber, to predict accurately the pressure dis- 
tribution when the camber is large. The line- 
arized theory assumes that terms such as ( u / V ) ~ ,  
( v / V ) ~  and uv/V2 and higher order terms are small 
compared with unity and therefore may be 
neglected. It may be calculated from the line- 
arized results given in figures 3 and 4(a) that the 
maximum values of ( u / V ) ~  and ( v / V ) ~  for the 
two-dimensional case are about 0.068 and 0.09 for 
the Tulin-Burkart section with cL,d=o.392 and 
about 0.08 and 0.09 for the five-term section with 
CL,d=0.196. On the other hand, the maximum 
values of ( U / V ) ~  and ( V / V ) ~  are 0.32 and 0.36 for 
the five-term section with CL,d=0.392. Since 
the values of 0.32 and 0.36 are not small compared 
with unity, the assumption that these second- 
order terms may be neglected is not justified for 
the five-term section with cL,d=o.392. 

The available data are not sufficient to de- 
termine accurately the limits on the applicability 
of the theory. However, i t  is clear that the 
theory is applicable for all cambers for which the 
two-dimensional linearized theory predicts ( U / V > ~  
and (Z)/V)~ to be less than about 0.1. On the 
other hand, the theory is definitely lacking in 
accuracy, particularly for calculating the drag 
coefficient, when the linearized result gives values 
of ( u / V ) ~  and ( v / V ) ~  greater than about 0.3.  

CENTER OF PRESSURE 

The center of pressure of the flat plate and the 
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. I  

Tulin-Burkart section as calculated from the data 
of figures 37 and 38 are compared with theory in 
figure 52. The theory from equation (113) is in 
good agreement with the experimental data for 
both models. Since the experimental accuracy 
of the forces and moments on the flat plate is poor 
a t  small angles of attack (small total loads) the 
accuracy of the center of pressure from the data 
obtained on the flat plate a t  4' and 6' incidence is 
doubtful. 

Center-of-pressure data as taken from reference 
18 for the flat-plate and Tulin-Burkart sections 
are compared with theory in figures 53(a) and 
53 (b) , respectively. The agreement between the- 

' ' ' ' " " ' " ' 
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( t i )  Fltit. 
(h) Tulin-Burkiirt; (75, d=0.392. 

FIGURE 5:3.--Coniparison of the tlworc~tic:il location of thc. 
center of prwsure with thv  csperimcntnl diit:i rvportcd ill 

refcrencc 18 on nspcct-ratio-1 flat tilid Trilin-Burkart 
sections. u - 0. 

ory and experiment is good for those conditions 
where the upper surface of the hydrofoils was 
not wetted. 

Experimental measurements of the center of 
pressure of the two five-term sections as presented 
in reference 19 are compared with theoretical com- 
putations in figure 54(a) for the aspect-ratio-1, 
CLed=0.392 section and in 54(b) for the aspect- 
ratio-3, cL,d=0.196 section. These experimental 
data are higher than the theoretical predictions 
by about 5 percent to 15 percent. This discrep- 
ancy is probably due to the application of the 
crossflow lift at the midchord in equation (113). 
For the five-term section the crossflow is ob- 
viously concentrated on the rearward portion of 
the section. For cambers of the magnitude in- 
volved for these two sections, the data indicate 

- *CP 
C 

a, deg 

(a) Aspect-ratio-1 five-term hydrofoil; CI,, d=0.392. 

FIGURE 54.-Comparisoii of theoretical ratio of center of 

pressure to  chord 7 with expcrimentsl data of refer- 

ence 19. u-0. 
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(b) Aspect-ratio-3 five-term hydrofoil; c ~ ,  d =  0.196. 

FIGURE 54.-Concludrd. 
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that application of the crossflow at, for example, 
0.8 chord would be better than the midchord loca- 
tion assumed. However, no general expression 
for the center of pressure of the crossflow compo- 
nent of lift has been determined and, if better 
accuracy than that given by the midchord location 
is desired, the designer may make some improve- 
ment by devising some empirical relationship for 
the location. 

CAVITY SHAPE 

The slope of the upper cavity streamline has 
been shown in the section on theory to be directly 
proportional to the equivalent airfoil circulation 
and thus to the hydrofoil circulation. Thus the 
effect of aspect ratio on the slope of the upper 
cavity streamline of a flat plate may be given by 
an equation similar to equation (128); that is, 

A 
A S 1  tan tan (a-ai) (130) 

Thus for a given ratio of spray thickness to chord 
the theoretical value of the tan +A a t  some ar- 
bitrary aspect ratio and angle of attack is obtained 
by finding the two-dimensional value of + from 
figure 26 for the angle C Y - C Y ~  and then reducing 

The theoreti- the tangent of this angle by -- 
cal spray angles for the flat-plate model operating 
at angles of attack of 16' and 20' which were 
computed by using the measured values of SIC 
obtained from figure 40 are shown in figure 41 for 
comparison with experiment. The theoretical 
values are too high at  very shallow depths but 
the agreement becomes much better as the depth 
becomes greater than about 0.25 chord. 

Reference 18 presents further experimental data 
on the cavity shapes of the aspect-ratio-1 flat and 
Tulin-Burkart sections. Figure 55 shows the 
aspect-ratio-1 flat plate operating at  a depth of 
0.5 chord and an angle of attack of 16". The 
plate had 3 pins located along the span so that the 
upper ends of the pins were 0.34 chord rearward 
of the leading edge and 0.17 chord from the lower 
surface of the plate. These pins were spaced 
0.021, 0.198, and 0.375 chord from the right tip of 
the plate. From the photograph the cross section 
of the cavity may be estimated as shown by the 
solid line in figure 55(b). The horizontal short- 
dashed line is the calculated location of the cavity 
upper surface based on a uniform distribution of 

A 
A S  1 

-~ ,Theory. distributed a, 

.4 .5 .6 7 .8 .9 1.0 1.1 
L-58-2509 Distance from tip in chords 

(a) View of ventilated flow. 
(b) Section a t  0.34 chord from leading edge. 

FIGURE 55.-Cavity cross section for flat plate. Aspect 
d 

ratio, 1.0; - =0.5; a= 16'. 

ai. The other dashed curve is the cavity cross 
section calculated by assuming the airfoil induced 
angle distribution for a rectangular plan form. 
(See ref. 10.) It may be noted that near the tips 
the cavity shape is primarily due to crossflow, 
whereas near the center the calculated value based 
on the actual distribution of induced angle of 
attack is more nearly correct if the cavity curva- 
ture due to the strut is neglected. The cavity 
shape based on uniform induced-angle distribution 
is about 20 percent lower than the maximum 
measured value. 

In  figure 56 the calculated cavity shapes based 
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(a) Flat. 
(b) Tulin-Burkart; C~,d=O.392. 

FIGURE 56.- Calculated cavity upper surface streamlines 

4=0.5. 
for flat and cambered models. Aspect ratio, 1.0; 
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on uniform at are presented for the two aspect- 
ratio-1 hydrofoils operating a t  d/c=0.5. It may be 
seen in figure 56(a) that for the flat plate the cal- 
culated streamline a t  an angle of attack of 4' just 
touches the upper surface of the model. If the 
speed is sufficiently high, no significant negative 
pressure coefficient can exist in the flow field; 
therefore, if the forward portion of the upper sur- 
face is wetted and positive pressures occur, the 
lift will decrease. Thus it may be concluded from 
the calculations that the maximurn value of the 
lift-drag ratio for this flat-plate hydrofoil occurs 
at an angle of attack of 4'. Experimental data 
obtained in reference 18 at  speeds up to about 185 
feet per second reveal that the forward portion of 
this flat-plate hydrofoil does become wetted a t  an 
angle of attack of about 4". The maximum lift- 
drag ratio also occurred a t  an angle of attack of 
about 4". 

The hydrofoil section shown in figure 56(b) is 
the Tulin-Burbart model with CL,d=0.392. The 
calculated location of the cavity streamline is 
shown for angles of attack of 4', 8', and 12'. It 
may be noted that the calculated streamlines are 
almost identical with those shown in figure 56(a) 
for the flat plate. The reason that both hydrofoils 
have about the same theoretical cavity streamline 
location is peculicir to an aspect ratio of 1. There 
are two compensating effects due to camber which 
cause this similarity in streamlines. The cambered 
hydrofoil cavity ordinates are increased because 
of the hydrofoil curvature but siniultuneously the 
camber causes increased lift a t  a given angle and 
produces a greater induced angle of attack. 
The greater induced angle of attack results in a 
decrease in cavity ordinates and thus effectively 
cancels the increased ordinates contributed by the 
hydrofoil curvature. 

Figure 56(b) indicates that veritiltition from the 
leading edge of the canibered model will not be 
possible a t  angles less than about 10'. Experi- 
ments conducted in ventilated flow up to speeds of 
180 feet per second tirid reported in referencr 18 
me in excellent tigrernient with this prediction ; 
thtLt is, tit tingles less thin 10' the forwiird portion 
of the upper surfiicr wtis wetted. Howcver, the 
experiniental diitti of rrfcronce 18 show that thr 
rntixiinunt lift-drag rtitio of the cwibercd niodrl 
oclcurred t i t  1111 unglc of atttick of nbout 7' to 8'. 
The fiict thlit the lift-dnig ratio continucd to 
increase even with the upper surface wet tcd is 

attributed to the curvature of the upper surface 
and finite speed. At a speed of 175 feet per second 
it is possible to support a pressure coefficient as 
low as -0.07. Thus, it is possible at finite speeds 
for the upper surface to add to the lift and 
possibly decrease the drag. Theoretically, at 
higher speeds the maximum lift-drag ratio will 
occur closer to the prediched angle of attack of 10'. 

THEORETICAL COMPARISON OF PRACTICAL 
LOW DRAG SECTIONS 

The experimental data given in the preceding 
section indicate that a reliable approximation to 
the cavity streamline location on high-speed, 
moderate-aspect-ratio surfaces can be obtained 
theoretically. By using the theory developed, 
it is now possible to determine the best of the four 
section shapes when operating under practical 
conditions : (1) circular arc, (2) Tulin-Burkart, 
(3) three term, and (4) five term. The operating 
condition chosen for comparison was a depth of 
submersion of 1 chord and an aspect ratio of 3. 
The structural characteristics of the section were 
arbitrarily chosen as (1) thickness ratio t/c=0.03 
a t  0.2 chord from the leading edge and (2) t/c=0.04 
a t  the chordwise location of tlie maximum lower 
surface ordinate. The leading edge and these 
control points were assumed to be connected by 
straight lines and the upper surface rearward of the 
latter control point was taken as parallel to the 
reference line of the section. Because of the almost 
uniform gradation of the various characteristics 
of the four sections, only the extremes, the circular- 
arc and five-term section, were compared. 

Over the range of carnbcrs from c L , d = o  to c L , d  

=0.3, tlie calculated cavity streamlines first 
touched the upper surface of the assumed hydro- 
foil sections at  the 0.2-chord control point. Thus, 
the second point a t  the mnxiniuin lower surface 
ordinate did not influence tlie maximum lift-drag 
ratio of the sections. By using equations (99) 
and (loo), the lift and drag coefficients of the 
sections were calculated. The friction drag co- 
efficient was estimated to be 0.004. A plot of the 
vtkritition of the lift-drtig ratio with lift coefficient 
is presented in figure 57. Also shown in figure 57 
is the line denoting the minimurn angle a t  which 
thrl c.ontrol point a t  0.2 chord just clerirs thr 
ctdrultited cavity streamline. The area above 
this line is shaded to indicate that these regions 
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d FIGURE 57.- Theoretical lift-drag ratios of five-term and circular-arc hydrofoils. Aspect ratio, 3.0; -= 1.0. 
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are not attainable under the design conditions. 
This line of minimum angle of attack for the 
structure specified is also indicat,ed in figures 17 
to 24 as the angle of attack for maximum LID. 

The regions above the dashed lines are zones 
where the hydrofoil cannot operate with a full 
cavity from the leading edge. The dashed lines 
should, of course, be modified when control points 
other than t/c=0.03 a t  x/c=O.2 are used. 

The significant result shown in figure 57 is that 
either type of camber can give higher maximum 
lift-drag ratios than the flat plate. The optimum 
amount of camber for both hydrofoils correspond 
to a value of C,,, of about 0.1. The optimum 
lift coefficient is about 0.175 for both sections. 
The hydrofoil cross sections shown in the top of 
figure 57 are for CL,d=O.l oriented at  the minimum 
angle of attack revealed by the analysis. The 
analysis as presented in figure 57 also shows that 
the five-term section is superior to the circular 
arc. The maximum values of the lift-drag ratios 
are 10.5 and 9.5 for the five-term and circular-arc 

sections, respectively. Although the lift-drag 
ratio of the five-term section is slightly higher than 
that of the circular arc, it is not twice as high as 
that predicted from the two-dimensional theory. 

For an aspect-ratio-3 hydrofoil, supported by a 
single strut and operating at  speeds of 80 knots 
or greater, the thickness distribution chosen for 
the analysis is not conservative. Therefore, the 
calculated maximum lift-drag ratio of about 10 
at a lift coefficient of 0.175 is very near the opti- 
mum that can be obtained on a single super- 
cavitating hydrofoil supported on one strut and 
operating at  zero cavitation number at speeds of 
80 knots or greater. More severe structural re- 
quirements than those imposed in the present 
analysis will reduce the maximum attainable lift- 
drag ratio. 

CONCLUSIONS 

Two supercavitating hydrofoil sections with low 
drag have been derived by opt,imizing the shape 
when three and five terms are assigned to the 
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series expansion for !be vorticity distribution. 
The two-dimensional lift-drag ratios of the two 
sections operating at  their design lift coefficient 
are theoretically about 45 and 80 percent greater 
than the Tulin-Burkart configuration. 

The concept of combining the linearized effects 
of camber with nonlinear flat-plate theory has 
proven to be satisfactory. The results of a com- 
parison of this theory, corrected for aspect ratio, 
with experimental data obtained on four low- 
aspect-ratio sections at  zero cavitation number 
may be summarized as follows : 

1 .  The theoretical lift coefficient was in excellent 
agreement with those obtained experimentally. 

2. The theoretical drag coefficient was in ex- 
cellent agreement with experimental data on all 
models except a highly cambered five-term section 
with a design lift coefficient of 0.392. The dis- 
agreement is attributed to the inability of linear- 
ized theory to predict accurately the pressure 
distribution when the curvature is very great. 

3. The theory for the five-term section predicts 
centers of pressures slightly nearer the leading 
edge than experiment ; however, the agreement 
may be improved by taking the center of pressure 
of tho crossflow component reurwarcl of the mid- 
chord. 

4. Low-drag hydrofoils developed from the 
linear theory cannot operate a t  the orientation for 
which the stagnation point is at the leading edge 
because an upper surface cavity will not form from 
the leading edge even for sections with zero thick- 
ness. The theoretical cavity shapes are in suffi- 
cient agreement with experimental data to warrant 
their use in making calculations of the minimum 
angle of attack for which a cavity will form from 
the leading edge. 

5. The theory developed is used to compare 
various low drag sections which are considered to 
be structurally adequate for zero cavitation num- 
ber operation at  speeds of about 80 knots when 
the hydrofoil has an aspect ratio of 3 and is sup- 
ported by a single strut a t  a depth of one chord. 
This theoretical comparison shows that under the 
specified conditions the maximum lift-drag ratio 
obtainable is about 10. The best section for 
optimum lift-drag ratio is the five-term design; 
however, the camber profile may range from the 
five term to the circular arc with only about a 10 
percent chnnge in the maximum lift-drag ratio. 
LANGLEY RESEARCH CENTER, 

XATIONAL AERONAUTICS A N D  SPACE ADMINISTRATION, 
LANGLEY FIELD, VA., July 8, 1858. 



APPENDIX 
SAMPLE CALCULATION OF LIFT, DRAG, AND CENTER OF PRESSURE OF A CAMBERED 

LIFTING SURFACE OPERATING AT FINITE DEPTH AND ZERO CAVITATION NUMBER 

A sample calculation of the lift, drag, and center 
of pressure is presented for a Tulin-Burkart section 
with A1=0.2(CL,d=0.392), having an aspect ratio 
of 1 and operating at  an angle of attack of 12' 
and depth of submersion of 0.071 chord. 

LIFT COEFFICIENT 
STEP 1 

For the Tulin-Burlcart hydrofoil section 

7 from equation (7), 

STEP 2 

From figure 15 at d/c=0.071, 

f f C  ---=0.718 
ffc, m 

Therefore, 
ac= (0.7 18) (0.25) = 0.18 

STEP 3 

By assuming that cL,1=0.25 and r=0.12 and 
by using equation (95), 

ffi=1.12 E = 0 . 0 8 8  
7r 

and 

12 
57.3 a+ac-ai=-+0.18-0.088= 0.301 radian= 17.2' 

From figure 2 for d/c=0.071 and a=17.2', it is 
found that m=1.63; therefore, from reference 11, 
r=0.12 as assumed. By using the first term in 
equation (99), 

This value should check with the original assump- 
tion; if not, repeat step 3 with a better approxima- 
tion for C, and r .  

STEP 4 

For the Tulin-Burlcart section given by equa- 
tion (14) with A1=0.2, 

Therefore, 

and 
ao=tan-' 0.033=1.92' 

a'= 12°+1.920=13.920 

a,=0.18 radian=10.3' 

a'+ aC=24.22O 
or 

By using equation (97), 

1 cL,c=2 0.88 sin2 (24.22) cos 13.92'=0.072 

Thus, the required lift coefficient is 

c,= e,,, + CL,c=0.251 +0.072=0.323 

DRAG COEFFICIENT 

From step 3 in the lift-coefficient calculation, 
STEP 1 

Q + ( Y ~ - Q ! ~ =  17.2' 

For d/c=0.071, m=1.63; and for d / c = a ,  m=1.2. 
Therefore, from equation (110) 

1.63 7r m -- -=2.13 
e- 1.2 2 

From figure 2 by using the a=O line with m=2.13, 
67 
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it can be found that 

(d/c),=0.66 
STEP 2 

If a (the distance to airfoil center of pressure) 
is assumed to be 0.37, then from figure 13 for 
a=0.37 and d/c=0.66, the following values are 
found : 

Bo=0.56 

B1=0.15 

B,zO 

From equation (86) for Ao=a-ar=0.121, AI 
=0.2 and&=-0.1. The values of Po, C,, and C, 
may be determined as 

Po= 0.2 1 2 

Cl = 0.18 1 

c,= -0.1 

and from equation (SO), a=0.367, which checks 
with the assumed value. If the resulting value of 
a differs enough from the assumed value to affect 
the values of the B coefficients, step 2 should be 
repeated. 

STEP 3 

From equation (109) the value of e is determined 

as 
t=0.0013 radian=0.065" 

STEP 4 

Subs ti tuting the following values 

C~,i=O.251 CLs,=0.072 C,=0.004 

into equation (100) yields 

CD = 0.2 5 1 tan (1 2.065 ") + 0.072 tan (1 3.92 "> 
+0.004 = 0.075 

CENTER OF PRESSURE 
STEP 1 

From step 2 of the drag-coefficient calculation, 

c0=0.212 C,=O.lSl c,=-0.1 

Thus, from equation ( I l l ) ,  

Xcp,l = O.43C 

STEP 2 

From equation (113) and by using 

CL, 1 = 0 2 5  1 
and 

it is found that 
CL,,= 0.072 

x,,,= 0 . 4 5 ~  
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